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Abstract 

The pulp and paper sector, valued at over $380 billion in 2025, faces ongoing challenges in managing 

process inconsistencies, high energy use, and maintaining uniform product quality. This is especially 

critical in Kraft pulping, which constitutes 85% of chemical pulp production. This investigation presents 

two machine learning ensemble models using tree-based algorithms, including Decision Tree 

Regressor, Light GBM, and Bagging Regressor, to optimise a continuous eucalyptus digester and a 

multi-effect evaporator. Using six months of minute-level PI System data (approximately 262,800 

samples) from a JK Paper facility, the Kappa number prediction model forecasts lignin content 90 

minutes ahead with R² = 0.96, RMSE = 0.92, and MAPE = 1.9%. This enables anticipatory alkali 

adjustments that reduce chemical usage by 13–17% while improving quality consistency to within ±1.1 

units. A parallel evaporator model predicts heavy black liquor density with MAPE = 1.7% and RMSE = 

0.032 g/cm³. This supports improved steam control, increasing steam economy from 4.8 to 6.1 kg 

water/kg steam (a 25% improvement) and reducing energy requirements by 13%, resulting in estimated 

annual savings exceeding $620,000. Both models were optimised using Optuna and interpreted using 

SHAP analysis, where the H-factor contributed 35% importance. Deployed on edge servers with PI 

Vision dashboards, the system achieves 96% operational uptime. This work demonstrates the capability 

of ensemble machine learning techniques to handle nonlinear industrial processes, reduce emissions 

by approximately 1,200 tCO₂ per year per mill, and support the sector's projected growth toward a $14.7 

billion AI market by 2034 at a 7.9% CAGR. 

Keywords: machine learning, Kappa number prediction, steam economy, pulp and paper industry, 

process optimisation, predictive modelling, energy efficiency. 

I. INTRODUCTION 

The pulp and paper manufacturing sector remains a vital component of global industrial activity, 

producing approximately 185 million metric tons of chemical pulp in 2024. Market forecasts indicate a 

compound annual growth rate of 3.8% through 2034, with an expected increase of $43.2 billion in 
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market value by 2029. This growth is primarily driven by the rising demand for sustainable packaging, 

hygiene products, and regulatory shifts that promote recyclable and eco-friendly materials. 

Within the industry, Kraft pulping holds an 85% market share, relying on high-temperature alkaline 

digestion to separate cellulose fibres from lignocellulosic biomass. Eucalyptus plantations, increasingly 

favoured for their rapid growth cycles in tropical regions, play a significant role in supplying consistent 

raw material. 

Despite its industrial dominance, the Kraft process faces significant operational challenges. Variations 

in feedstock and dynamic process conditions primarily cause these challenges. Moisture content in 

eucalyptus chips can fluctuate between 8% and 15%, affecting uniform impregnation in the digester. 

Seasonal shifts in syringyl-to-guaiacyl lignin composition influence delignification efficiency, chemical 

consumption, and final pulp quality. In addition, unexpected digester disturbances, including pressure 

variations and uneven liquor circulation, can disrupt fibre liberation and cause inconsistencies in 

downstream processing. 

These issues highlight the nonlinear and variable nature of pulping operations, underscoring the need 

for predictive modelling and data-driven optimisation to improve stability, efficiency, and overall product 

consistency. 

 

II. BACKGROUND AND PROBLEM CONTEXT 

 

Central to these operational challenges is the Kappa number, an ISO-standardised index (ISO 

302:2015) that quantifies residual lignin through controlled permanganate titration and serves as a 

benchmark for pulping completeness. Optimal Kappa values between 17 and 20 support fibre yields of 

45–50% while maintaining hemicellulose integrity for downstream processing. Deviations from this 

window introduce significant cost and quality penalties. Elevated Kappa readings above 22, typically 

arising from insufficient cooking, require additional bleaching steps that raise production costs by 7–

10%, whereas values below 15 indicate excessive hydrolysis that degrades carbohydrate structures 

and increases reject rates [3], [30], [35]. These deviations not only inflate raw material losses but also 

propagate quality defects into papermaking, where uneven lignin residues manifest as surface spots, 

bonding inconsistencies, and reduced tensile strength. 

Beyond the digester, the black liquor evaporation phase constitutes one of the most energy-intensive 

unit operations in a Kraft mill. This stage concentrates dilute spent liquor from 15–20% solids to heavy 

black liquor at 65–80% solids for chemical recovery, reclaiming up to 96% of cooking chemicals. 

However, the evaporator train, typically comprising five to seven effects, consumes 28–35% of a mill's 

thermal energy budget. Although theoretical steam economies of four to five kilograms of water 

evaporated per kilogram of steam are achievable through vapor reuse, real-world systems experience 

12–18% performance losses due to scale accumulation from sodium salts and organic polymers, as 

well as rheological complications induced by feed variability, which increase viscosity and hinder heat 

transfer [15], [33], [37]. These inefficiencies significantly elevate greenhouse gas emissions, with a mid-

sized mill often producing more than 500,000 tons of CO₂-equivalent annually, conflicting with policy 

frameworks such as the European Union's Fit for 55 initiative, which mandates a 55% emissions 

reduction from 1990 levels by 2030 through stricter carbon pricing and biomass utilisation mandates 

[4], [28]. 

Traditional control strategies further exacerbate these issues. The widely used H-factor metric, which 

combines thermal severity and cooking duration, often lags by 90 minutes behind laboratory validation 

results, leading to reactive overshoots of approximately 15%. Similarly, empirical steam modulation 

rules in evaporators are ill-equipped to adapt to transient disturbances, sustaining high fuel consumption 

amid volatile natural gas tariffs of $25–30 per megawatt-hour [5], [29], [34]. Combined with ongoing 

supply chain disruptions and raw wood price volatility, these factors underscore the need for precision-

driven, adaptive process interventions to maintain competitiveness and operational stability. 

In response, the adoption of artificial intelligence within pulp and paper operations has accelerated. The 

AI-focused sub-segment of the industry is projected to grow from $7.1 billion in 2024 to $14.7 billion by 
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2034, driven by advancements in sensor fusion, industrial Internet of Things (IIoT) infrastructure, and 

edge computing for real-time diagnostics [20], [25], [11]. This evolution reflects a broader trend toward 

predictive and prescriptive approaches that leverage extensive telemetry streams from distributed 

control systems. These approaches replace static heuristics with adaptive models capable of 

interpreting high-dimensional, noisy sensor datasets and generating actionable insights with minimal 

latency. 

Among available modelling strategies, tree-based regression methods stand out as particularly effective 

for nonlinear industrial processes. Decision Tree Regressors partition feature space into interpretable 

decision boundaries to approximate continuous targets; Light Gradient Boosting Machines employ 

histogram-based gradient descent to optimise performance in sparse, high-velocity data regimes; and 

Bagging Regressors ensemble multiple bootstrapped learners to reduce variance and improve 

generalisation [11], [18], [19]. These algorithms offer rapid inference times—typically under 50 

milliseconds on standard industrial hardware—while interpretability tools such as Gini impurity 

measures and SHAP value decomposition provide transparent explanations of model behaviour. For 

example, SHAP analysis frequently highlights the H-factor contributing up to 35% importance in Kappa 

trajectory prediction, offering clarity unattainable through neural network-based alternatives that are 

susceptible to overfitting, especially when digester logs contain less than 2% anomaly data [11], [13], 

[20]. 

Recent literature provides further empirical support for these techniques. Studies from 2024 onward 

show that Decision Tree and Extra Trees models accurately forecast algal biomass growth in 

bioreactors with RMSE values under 5%, analogous to lignin degradation patterns. LightGBM models 

have also been used in pharmaceutical crystallisation to optimise yields under multicollinear conditions, 

reducing simulation runtimes eightfold [18], [19], [24]. In pulping-specific research, Bagging-based 

hybrids have enabled surrogate modelling in reactive distillation with 92% predictive fidelity despite 

seasonal feed drifts, while gradient-boosted ensembles have improved environmental lifecycle 

assessments of polymer processes, reducing overfitting by 15% relative to linear baselines [20], [25]. 

The present study outlines a unified pipeline for deploying these ensemble models together. The first 

component predicts Kappa numbers 90 minutes ahead to guide proactive adjustments of white liquor 

dosages, preventing over-alkalisation and undercooking. The second component predicts heavy black 

liquor density to optimise evaporator steam valve modulation, improving vapour recompression 

efficiency across multiple effects. Calibrated using operational logs from an industrial eucalyptus Kraft 

facility in India, these models were optimised for extended forecast horizons and achieved combined 

resource savings of 13–17% through variance reduction. Key contributions include a comprehensive 

ablation comparing Decision Tree, LightGBM, and Bagging models against SVR baselines, revealing 

12% lower MAPE during cross-validation; a replicable on-premises deployment framework 

incorporating Docker containers and Prometheus drift detection to achieve 96% operational continuity; 

and empirical evidence showing that stabilised Kappa trajectories reduce evaporator feed heterogeneity 

by 7%, increasing thermal performance. These findings reflect emerging trends identified in recent 2025 

process intensification reviews [1], [2], [21]. Through these advances, the proposed framework not only 

enhances operational effectiveness but also strengthens long-term resilience as the industry 

progresses toward carbon-neutral manufacturing targets for 2050. 

 

III. LITERATURE REVIEW 

A. Advances in Kappa Number Prediction Using Tree Ensembles 

The development of Kappa number prediction methodologies has undergone substantial evolution, 

beginning with the classical Purdue digester simulations of the 1970s. These mechanistic models 

conceptualised digesters as interconnected reactor cascades to represent mass and energy transfers 

during delignification. While foundational to understanding lignin dissolution kinetics and chip–liquor 

interactions, these models were limited by high computational cost and insufficient adaptability to real-

time disturbances such as chip size variability or unstable liquor circulation patterns [8]. Later 
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refinements, including a 2023 variant incorporating hexenuronic acid (HexA) dynamics, achieved 

improved laboratory-scale precision of approximately ±2 Kappa units. However, they remained 

sensitive to syringyl-to-guaiacyl (S/G) lignin ratios in hardwood species, resulting in prediction errors 

exceeding 9% under real industrial conditions [4], [26]. 

Empirical and statistical alternatives soon emerged. Box–Behnken response surface methods applied 

in 2024 established quadratic approximations linking cellulose extraction efficiency and Kappa 

constraints, offering workable surrogates to reduce computational load but failing to capture sequential 

dependencies such as prolonged cooking lags [7]. The transition to data-driven approaches marked a 

turning point, with tree-based ensembles demonstrating unprecedented robustness and scalability for 

handling nonlinear industrial pulp processing dynamics. 

Decision Tree Regressors (DTRs) have gained prominence for their hierarchical impurity-based 

partitioning, enabling clear delineation of operational thresholds—such as alkali charges exceeding 

14% leading to rapid Kappa decline due to intensified bulk delignification [10]. Bagging Regressors 

strengthen reliability by aggregating predictions across numerous bootstrapped trees, reducing 

variance and mitigating overfitting. Correa et al. (2019) successfully deployed such ensembles within 

Kamyr digester inferential control, achieving R² values of 0.90 even under sensor noise from white liquor 

fluctuations [12]. LightGBM introduced further efficiency by adopting histogram-based gradient descent 

and leaf-wise tree growth, achieving tenfold faster training times than XGBoost and enabling 

deployment in computationally constrained mill environments [11]. 

Recent implementations highlight the versatility of such models. Adeyemo and Enitan (2024) utilised 

gradient boosting to generate eco-optimised Kappa forecasts integrating moisture and alkali 

trajectories, achieving an RMSE of 1.2 while SHAP analysis identified temperature effects contributing 

38% to prediction variance [13]. A 2024 MDPI study on pulping impact assessment employed Random 

Forest methods to map Kappa–yield relationships in eucalyptus feeds, achieving 92% classification 

accuracy using recursive feature elimination prioritising fibre morphology descriptors [9]. Hybrid 

approaches have also gained traction; Correa et al. (2024) integrated genetic algorithms with tree-

based surrogates to achieve Pareto-optimised Kappa minimisation, yielding 10% gains in continuous 

digester performance [0]. 

Emerging work from 2025 continues to strengthen this trajectory. An August 2025 ResearchGate 

preprint combined Box–Jenkins time-series models with tree ensembles, reaching sub-2.5% MAPE for 

90-minute ahead Kappa predictions by effectively capturing autocorrelations in H-factor progression [1]. 

Taylor and Francis investigations (September 2025) introduced neuro-fuzzy-tree hybrids for 

biobleaching optimisation, reducing Kappa levels by 21% at an RMSE of 1.8 through fuzzy rule–based 

uncertainty modelling [2]. Likewise, a De Gruyter analysis benchmarked PLSR against RF, XGBoost, 

LightGBM, and CatBoost for poplar feedstock pulping, identifying LightGBM as the top-performing 

model (R² > 0.95) due to practical bundling of anatomical–chemical traits [27]. Despite this progress, 

gaps remain in designing eucalyptus-specific models that account for seasonal fouling effects, 

feedstock heterogeneity, and transient digester anomalies. The present work addresses these 

limitations by exploiting LightGBM's sparsity-aware learning mechanisms to improve generalisation 

across low-frequency edge cases, including elevated HexA loads [14], [23], [28]. 

 

B. Tree-Based Optimisation in Black Liquor Evaporation 

Research into black liquor evaporation has progressed from traditional thermodynamic analysis of multi-

effect evaporators (MSEs) to adaptive, data-driven models capable of handling unsteady-state 

operational complexities. Earlier techniques optimised energy usage by analysing equilibrium steam 

requirements in forward-feed MSE cascades, but performed poorly under dynamic conditions such as 

vapour flashing anomalies or fluctuating feed solids [16]. A 2020 Heliyon study introduced tree–genetic 

algorithm hybrids for energy minimisation, achieving 14% steam savings through optimised effect 
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sequencing. However, the approach was constrained by its inability to capture rapid transients 

stemming from feed variability [16], [29]. 

Tree-based models offer significant advantages for such nonlinear systems. Decision Tree Regressors 

effectively delineate operational states, identifying density thresholds (e.g., >1.4 g/cm³) predictive of 

fouling onset from sodium carbonate crystallisation, enabling proactive steam valve modulation [17]. 

Bagging Regressors enhances reliability by averaging across diverse tree subsets, improving resilience 

to disturbances in liquor flows contaminated with organic particulates [17], [30]. LightGBM's exclusive 

feature bundling is particularly advantageous in high-dimensional evaporator setups, where pressure–

temperature–flow interactions can be compressed into lower-cardinality representations for efficient 

learning on edge devices [11], [23]. 

Practical implementations continue to validate these models. Na et al. (2023) integrated boosting 

regressors with mechanical vapour recompression–multi-effect systems (MVR-MES), achieving solids 

prediction RMSE below 0.04 g/cm³ and boosting coefficient of performance to 6.2, with investment 

payback achieved in 2.5 years from 10 t/h steam reductions [17]. Ekman et al. (2022) combined tree 

surrogates with recovery boiler energetics to optimise air–fuel tuning, enabling 8,200 MWh annual 

evaporation gains, with Random Forest outperforming neural networks in managing heat leakage 

across effects [20]. A 2025 ResearchGate crossover study on biogas–pulp hybrids applied LightGBM 

to mimic rheological behaviours in lignocellulosic digestion, yielding R² = 0.82 for solids forecasting and 

demonstrating transferability to fouling prediction models that reduced evaporator downtime by 15% 

[12], [31]. 

Broader 2025 compendia reinforce these findings. MDPI's September issue of Processes documented 

ensemble-based condition monitoring systems for evaporators, where gradient boosting with IoT sensor 

integration reduced unplanned stoppages by 15% through automated viscosity anomaly detection [10]. 

Considering dataset imbalance—where over 95% of samples represent nominal operation—Applied 

Energy's 2024 anaerobic digester simulations implemented intra-day tree resampling to control MAPE 

to 2.1%, with bootstrap aggregation stabilising forecasts under variable loading [18], [24]. A 2023 

Springer study on evapotranspiration analogues demonstrated Bagging–RF hybrids achieving Nash–

Sutcliffe efficiencies above 0.90, findings that translate effectively to MSE cascade environments with 

viscosity-adjusted scaling [32]. 

Despite the advancements, challenges persist in harmonising disparate SCADA sources and mitigating 

transient anomalies from seasonal wood shifts, which contribute to 10–12% false positives in fouling 

detection [33]. The proposed framework extends pulp-focused tree ensembles to steam management 

tasks, targeting steam economies exceeding 6 kg/kg under emerging decarbonisation imperatives. With 

EU carbon pricing accelerating incentives for thermal efficiency improvements of at least 20% per mill 

[6], [34], these integrated models not only surpass the performance of prior MVR optimisations but also 

form predictive synergies with upstream Kappa control strategies, potentially unlocking 8–10% 

additional gains in chemical recovery and thermal efficiency [17], [35]. 

III. METHODOLOGY 

A. Data Acquisition and Preprocessing 

Data were collected from JK Paper's OSIsoft PI System, encompassing six months of continuous 

industrial operation (January–June 2025). Telemetry was recorded at a one-minute sampling interval 

across both the continuous digester and the multi-effect evaporator system. 

For the digester subsystem, seven key process variables were extracted: temperature (°C), pressure 

(kPa), alkali charge (%), H-factor (unitless), chip moisture (%), liquor flow rate (m³/h), and prior Kappa 

number readings (units). This yielded approximately 262,800 usable data points. 
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For the evaporator subsystem, nine variables were captured: feed, inlet, and outlet temperatures (°C); 

effect-wise pressures (kPa); flows (m³/h); black liquor viscosity proxy via solids content (PR = 7.4 × DS 

/ (8.1 − 7.1 DS)); liquor density (g/cm³); and steam consumption rate (t/h). A total of 259,200 evaporator 

records were obtained. 

Approximately 5% missing values were imputed using forward-fill propagation, while fewer than 1.5% 

of entries exhibiting extreme deviations were removed using an interquartile range and 1.5–3σ hybrid 

filter. Feature scaling employed min–max normalisation within the [0, 1] interval. To support 90-minute 

predictive horizons, lagged sequences were generated at 90 time steps. 

The dataset was partitioned using a 75/15/10 train–validation–test split, stratified by operational cycles 

to preserve temporal consistency. Class imbalance in high-Kappa conditions (Kappa > 20, comprising 

fewer than 3% of samples) was addressed via SMOTE oversampling. 

 

 

 

 

 

 

 

 

 

 

 

Figure 01. Data flows from the sensor to the cloud to enterprise systems 

 

Figure 02. Architecture of the OSI PI System 
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B. Model Architectures and Training 

Models were implemented using Scikit-learn v1.5 and LightGBM v4.3. The Decision Tree Regressor 

was configured with a maximum depth of 8 and a minimum split size of 10. Bagging Regressors were 

constructed using DTR as the base learner, with 100 estimators and 80% subsampling of training rows. 

LightGBM models were initialised with 200 boosting rounds, a maximum depth of 6, a learning rate of 

0.05, 31 leaves, and subsampling of 0.9. 

Hyperparameter optimisation employed Optuna across 200 trials with RMSE minimisation as the 

objective function. Huber loss was selected to ensure robustness against outliers, and early stopping 

was triggered after 20 epochs without validation improvement. 

For Kappa number prediction, regression was performed on lagged sequences, followed by post-hoc 

operational rules: Δalkali = 0.12 × (target − ŷ) when deviations exceeded ±1.5 units. For the evaporator, 

a two-step scheme was used: density prediction followed by steam-rate optimisation, defined as 

minimising the squared deviation between predicted and target steam economy values via gradient-

based adjustments. 

Model performance was assessed using five-fold cross-validation with R², RMSE, MAE, and MAPE as 

evaluation metrics. Interpretability was provided through SHAP (v0.45), enabling global feature 

importance and local decision attributions. 

C. Deployment Framework 

Trained models were serialised using Joblib and Pickle, containerised via Docker Compose (Python 

3.11 environment with LightGBM dependencies), and deployed on on-premise edge servers equipped 

with Intel Xeon processors and 32 GB RAM. Real-time integration with PI Vision was achieved using 

REST API endpoints, enabling dashboards for live prediction feeds, parity plots, and anomaly alerts 

(e.g., Kappa drift exceeding ±1.5). Operational monitoring relied on Prometheus, configured to detect 

statistical drift using two-sample Kolmogorov–Smirnov tests, where p < 0.05 triggered automated model 

retraining procedures. 

 

IV. RESULTS 

 

A. Kappa Number Forecasting Performance 

The cross-validation results for the Kappa number prediction are summarised in Table I. Among the 

evaluated models, LightGBM exhibited the strongest predictive capability, achieving an R² of 0.96 and 

an RMSE of 0.92. These metrics outperform Bagging Regressor (R² = 0.92, RMSE = 1.05) and Decision 

Tree Regressor (R² = 0.89, RMSE = 1.28) by margins of 12–18%. The test-set MAPE of 1.9% is 

consistent with the performance reported in 2025 Box–Jenkins/tree hybrid investigations [1]. 

Parity plot analysis demonstrates that 94% of Kappa predictions fall within ±1 unit of laboratory 

benchmarks across 450 production cycles, substantially improving upon the empirical H-factor model, 

which achieves only 82% within this range. SHAP interpretability analysis indicates that the H-factor 

contributes 35% to model output variance, followed by temperature (29%) and alkali charge (22%). 

Scenarios with elevated chip moisture (>13%) showed prediction error increases of approximately 4%; 

however, LightGBM's boosting framework mitigated systematic drift under these conditions. 

A Monte Carlo simulation with 1,000 randomised process profiles demonstrated operational impact: 

alkali consumption decreased by an average of 1.2% per batch (equivalent to 15% normalised savings), 

while Kappa variability declined from 2.4 units to 1.1 units. These findings align with reductions reported 

in prior ensemble-driven optimisation studies, such as Adeyemo (2024) [13]. 
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Table I. Kappa Model Comparison (Test Set Metrics) 

 

Model R² RMSE MAE MAPE (%) 

DTR 0.89 1.28 1.02 2.6 

Bagging 0.92 1.05 0.85 2.2 

LightGBM 0.96 0.92 0.74 1.9 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 03 PI Vision Screen of the Output of the model 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 04 Actual V/s Predicted Kappa No 

 

B. Evaporator Density and Steam Optimisation 

Table II presents the evaporator model performance metrics. LightGBM achieves the highest accuracy 

with a MAPE of 1.7% and an RMSE of 0.032 g/cm³, outperforming the Decision Tree Regressor (2.3%, 

0.048) by approximately 26%. Residual analysis (Fig. 2) confirms stable density predictions across 

operating ranges. Steam economy simulations, conducted using predicted density profiles, 

demonstrate improvements from 4.8 to 6.1 kg of evaporated water per kilogram of steam. This 
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corresponds to an estimated steam savings of 8.5 t/h, translating to roughly 13% reduced thermal 

energy usage. These results are aligned with Na's 2023 MVR-MES benchmarks [17]. 

SHAP analysis reveals feed flow rate as the dominant variable (31% contribution), followed by 

combined temperature effects (25%). High-frequency fouling events, defined as density deviations 

exceeding 0.05 g/cm³, decreased by 18% during simulation. A synergy assessment indicates that 

stabilised upstream Kappa conditions (standard deviation <1.2 units) yield an additional 1.8% steam 

economy improvement, attributable to more uniform black liquor rheology enhancing heat-transfer 

efficiency. 

Table II. Evaporator Model Comparison (Test Set Metrics) 

Model R² RMSE MAE MAPE (%) 

DTR 0.88 0.048 0.038 2.3 

Bagging 0.91 0.041 0.033 2.0 

LightGBM 0.95 0.032 0.027 1.7 

Deployment records from July–September 2025 show 96% model uptime, averaging more than 500 

inferences per day. Integration within PI Vision dashboards supported real-time operational insights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 05. PI Vision screen showing model outputs 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 06. Actual vs. predicted live steam consumption 
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V. DISCUSSION 

 

A. Comparative Insights and Interpretability 

Training benchmarks highlight LightGBM's computational efficiency, requiring 45 seconds compared to 

Bagging's 120 seconds under identical hardware conditions. Its leaf-wise growth strategy reduces 

overfitting and avoids the pruning difficulties typically encountered with Decision Tree Regressors [11]. 

Compared to 2024 ensemble models used for pulping impact analysis [9], the present study achieves 

an additional 8% MAPE reduction, attributable to eucalyptus-specific hyperparameter tuning enabled 

through Optuna optimisation. 

Interpretability via SHAP confirms expected domain behaviour, with H-factor consistently identified as 

the dominant predictor. This aligns with findings from Correa's 2024 Pareto-optimised digester studies 

[0], where incremental H-factor adjustments effectively maintained Kappa targets (e.g., a +0.5 H-factor 

adjustment stabilises Kappa near 18 units). Nevertheless, limitations persist. The dataset is skewed 

toward stable operations (92%), and extrapolation to hardwood species introduces 5–7% error, as 

corroborated by 2025 multiscale kinetic Monte Carlo (kMC) findings [5]. Fouling events remain 

underrepresented (<1%), suggesting that extended anomaly detection frameworks may be required for 

broader generalisation [10]. 

B. Industrial Implications and Sustainability 

The energy and chemical savings demonstrated here resonate strongly with projected AI-driven 

efficiency initiatives for 2025 and beyond [20]. Achieving a 13% reduction in thermal usage contributes 

directly toward European decarbonisation targets and equates to more than 1,200 tons of CO₂ reduction 

annually per mill. The coupling of stable Kappa control with evaporator optimisation amplifies 

performance, yielding up to 20% holistic gains similar to trends reported in Ekman's 2022 recovery-

training integrations [20]. 

Operational challenges remain, particularly concerning legacy distributed control systems (DCS) that 

introduce approximately 30% integration delays. These can be mitigated through OPC UA middleware 

and edge-level computation. Future expansion may leverage federated learning across mill networks, 

improving generalizability while supporting the sector's 7.9% AI-driven growth trajectory [25]. 

 

VI. CONCLUSION 

This study demonstrates the viability and industrial impact of tree-based ensemble learning for 

predictive optimisation in Kraft pulping and black liquor evaporation. LightGBM achieved high-precision 

forecasting for both Kappa number and heavy black liquor density, enabling 13–17% reductions in 

chemical and energy consumption. Industrial deployment validated model robustness and operational 

benefits, addressing gaps identified in 2024–2025 literature [1], [2], [9]. Future work will explore 

multimodal integration, such as near-infrared (NIR) spectroscopy combined with tree ensembles for 

fouling detection, as well as AutoML pipelines for adaptive retuning. As the pulp and paper sector 

advances toward a projected $14.7 billion AI industry by 2034 [20], this framework provides a scalable 

pathway toward net-zero manufacturing by 2050. 
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