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Abstract

The pulp and paper sector, valued at over $380 billion in 2025, faces ongoing challenges in managing
process inconsistencies, high energy use, and maintaining uniform product quality. This is especially
critical in Kraft pulping, which constitutes 85% of chemical pulp production. This investigation presents
two machine learning ensemble models using tree-based algorithms, including Decision Tree
Regressor, Light GBM, and Bagging Regressor, to optimise a continuous eucalyptus digester and a
multi-effect evaporator. Using six months of minute-level Pl System data (approximately 262,800
samples) from a JK Paper facility, the Kappa number prediction model forecasts lignin content 90
minutes ahead with R? = 0.96, RMSE = 0.92, and MAPE = 1.9%. This enables anticipatory alkali
adjustments that reduce chemical usage by 13—-17% while improving quality consistency to within +1.1
units. A parallel evaporator model predicts heavy black liquor density with MAPE = 1.7% and RMSE =
0.032 g/cm?®. This supports improved steam control, increasing steam economy from 4.8 to 6.1 kg
water/kg steam (a 25% improvement) and reducing energy requirements by 13%, resulting in estimated
annual savings exceeding $620,000. Both models were optimised using Optuna and interpreted using
SHAP analysis, where the H-factor contributed 35% importance. Deployed on edge servers with Pl
Vision dashboards, the system achieves 96% operational uptime. This work demonstrates the capability
of ensemble machine learning techniques to handle nonlinear industrial processes, reduce emissions
by approximately 1,200 tCO, per year per mill, and support the sector's projected growth toward a $14.7
billion Al market by 2034 at a 7.9% CAGR.

Keywords: machine learning, Kappa number prediction, steam economy, pulp and paper industry,
process optimisation, predictive modelling, energy efficiency.

I. INTRODUCTION

The pulp and paper manufacturing sector remains a vital component of global industrial activity,
producing approximately 185 million metric tons of chemical pulp in 2024. Market forecasts indicate a
compound annual growth rate of 3.8% through 2034, with an expected increase of $43.2 billion in
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market value by 2029. This growth is primarily driven by the rising demand for sustainable packaging,
hygiene products, and regulatory shifts that promote recyclable and eco-friendly materials.

Within the industry, Kraft pulping holds an 85% market share, relying on high-temperature alkaline
digestion to separate cellulose fibres from lignocellulosic biomass. Eucalyptus plantations, increasingly
favoured for their rapid growth cycles in tropical regions, play a significant role in supplying consistent
raw material.

Despite its industrial dominance, the Kraft process faces significant operational challenges. Variations
in feedstock and dynamic process conditions primarily cause these challenges. Moisture content in
eucalyptus chips can fluctuate between 8% and 15%, affecting uniform impregnation in the digester.
Seasonal shifts in syringyl-to-guaiacyl lignin composition influence delignification efficiency, chemical
consumption, and final pulp quality. In addition, unexpected digester disturbances, including pressure
variations and uneven liquor circulation, can disrupt fibre liberation and cause inconsistencies in
downstream processing.

These issues highlight the nonlinear and variable nature of pulping operations, underscoring the need
for predictive modelling and data-driven optimisation to improve stability, efficiency, and overall product
consistency.

Il. BACKGROUND AND PROBLEM CONTEXT

Central to these operational challenges is the Kappa number, an ISO-standardised index (ISO
302:2015) that quantifies residual lignin through controlled permanganate titration and serves as a
benchmark for pulping completeness. Optimal Kappa values between 17 and 20 support fibre yields of
45-50% while maintaining hemicellulose integrity for downstream processing. Deviations from this
window introduce significant cost and quality penalties. Elevated Kappa readings above 22, typically
arising from insufficient cooking, require additional bleaching steps that raise production costs by 7—
10%, whereas values below 15 indicate excessive hydrolysis that degrades carbohydrate structures
and increases reject rates [3], [30], [35]. These deviations not only inflate raw material losses but also
propagate quality defects into papermaking, where uneven lignin residues manifest as surface spots,
bonding inconsistencies, and reduced tensile strength.

Beyond the digester, the black liquor evaporation phase constitutes one of the most energy-intensive
unit operations in a Kraft mill. This stage concentrates dilute spent liquor from 15-20% solids to heavy
black liquor at 65-80% solids for chemical recovery, reclaiming up to 96% of cooking chemicals.
However, the evaporator train, typically comprising five to seven effects, consumes 28-35% of a mill's
thermal energy budget. Although theoretical steam economies of four to five kilograms of water
evaporated per kilogram of steam are achievable through vapor reuse, real-world systems experience
12-18% performance losses due to scale accumulation from sodium salts and organic polymers, as
well as rheological complications induced by feed variability, which increase viscosity and hinder heat
transfer [15], [33], [37]. These inefficiencies significantly elevate greenhouse gas emissions, with a mid-
sized mill often producing more than 500,000 tons of CO,-equivalent annually, conflicting with policy
frameworks such as the European Union's Fit for 55 initiative, which mandates a 55% emissions
reduction from 1990 levels by 2030 through stricter carbon pricing and biomass utilisation mandates
[4], [28].

Traditional control strategies further exacerbate these issues. The widely used H-factor metric, which
combines thermal severity and cooking duration, often lags by 90 minutes behind laboratory validation
results, leading to reactive overshoots of approximately 15%. Similarly, empirical steam modulation
rules in evaporators are ill-equipped to adapt to transient disturbances, sustaining high fuel consumption
amid volatile natural gas tariffs of $25-30 per megawatt-hour [5], [29], [34]. Combined with ongoing
supply chain disruptions and raw wood price volatility, these factors underscore the need for precision-
driven, adaptive process interventions to maintain competitiveness and operational stability.

In response, the adoption of artificial intelligence within pulp and paper operations has accelerated. The
Al-focused sub-segment of the industry is projected to grow from $7.1 billion in 2024 to $14.7 billion by
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2034, driven by advancements in sensor fusion, industrial Internet of Things (lloT) infrastructure, and
edge computing for real-time diagnostics [20], [25], [11]. This evolution reflects a broader trend toward
predictive and prescriptive approaches that leverage extensive telemetry streams from distributed
control systems. These approaches replace static heuristics with adaptive models capable of
interpreting high-dimensional, noisy sensor datasets and generating actionable insights with minimal
latency.

Among available modelling strategies, tree-based regression methods stand out as particularly effective
for nonlinear industrial processes. Decision Tree Regressors partition feature space into interpretable
decision boundaries to approximate continuous targets; Light Gradient Boosting Machines employ
histogram-based gradient descent to optimise performance in sparse, high-velocity data regimes; and
Bagging Regressors ensemble multiple bootstrapped learners to reduce variance and improve
generalisation [11], [18], [19]. These algorithms offer rapid inference times—typically under 50
milliseconds on standard industrial hardware—while interpretability tools such as Gini impurity
measures and SHAP value decomposition provide transparent explanations of model behaviour. For
example, SHAP analysis frequently highlights the H-factor contributing up to 35% importance in Kappa
trajectory prediction, offering clarity unattainable through neural network-based alternatives that are
susceptible to overfitting, especially when digester logs contain less than 2% anomaly data [11], [13],
[20].

Recent literature provides further empirical support for these techniques. Studies from 2024 onward
show that Decision Tree and Extra Trees models accurately forecast algal biomass growth in
bioreactors with RMSE values under 5%, analogous to lignin degradation patterns. LightGBM models
have also been used in pharmaceutical crystallisation to optimise yields under multicollinear conditions,
reducing simulation runtimes eightfold [18], [19], [24]. In pulping-specific research, Bagging-based
hybrids have enabled surrogate modelling in reactive distillation with 92% predictive fidelity despite
seasonal feed drifts, while gradient-boosted ensembles have improved environmental lifecycle
assessments of polymer processes, reducing overfitting by 15% relative to linear baselines [20], [25].
The present study outlines a unified pipeline for deploying these ensemble models together. The first
component predicts Kappa numbers 90 minutes ahead to guide proactive adjustments of white liquor
dosages, preventing over-alkalisation and undercooking. The second component predicts heavy black
liquor density to optimise evaporator steam valve modulation, improving vapour recompression
efficiency across multiple effects. Calibrated using operational logs from an industrial eucalyptus Kraft
facility in India, these models were optimised for extended forecast horizons and achieved combined
resource savings of 13—17% through variance reduction. Key contributions include a comprehensive
ablation comparing Decision Tree, LightGBM, and Bagging models against SVR baselines, revealing
12% lower MAPE during cross-validation; a replicable on-premises deployment framework
incorporating Docker containers and Prometheus drift detection to achieve 96% operational continuity;
and empirical evidence showing that stabilised Kappa trajectories reduce evaporator feed heterogeneity
by 7%, increasing thermal performance. These findings reflect emerging trends identified in recent 2025
process intensification reviews [1], [2], [21]. Through these advances, the proposed framework not only
enhances operational effectiveness but also strengthens long-term resilience as the industry
progresses toward carbon-neutral manufacturing targets for 2050.

lll. LITERATURE REVIEW

A. Advances in Kappa Number Prediction Using Tree Ensembles

The development of Kappa number prediction methodologies has undergone substantial evolution,
beginning with the classical Purdue digester simulations of the 1970s. These mechanistic models
conceptualised digesters as interconnected reactor cascades to represent mass and energy transfers
during delignification. While foundational to understanding lignin dissolution kinetics and chip—liquor
interactions, these models were limited by high computational cost and insufficient adaptability to real-
time disturbances such as chip size variability or unstable liquor circulation patterns [8]. Later
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refinements, including a 2023 variant incorporating hexenuronic acid (HexA) dynamics, achieved
improved laboratory-scale precision of approximately +2 Kappa units. However, they remained
sensitive to syringyl-to-guaiacyl (S/G) lignin ratios in hardwood species, resulting in prediction errors
exceeding 9% under real industrial conditions [4], [26].

Empirical and statistical alternatives soon emerged. Box—Behnken response surface methods applied
in 2024 established quadratic approximations linking cellulose extraction efficiency and Kappa
constraints, offering workable surrogates to reduce computational load but failing to capture sequential
dependencies such as prolonged cooking lags [7]. The transition to data-driven approaches marked a
turning point, with tree-based ensembles demonstrating unprecedented robustness and scalability for
handling nonlinear industrial pulp processing dynamics.

Decision Tree Regressors (DTRs) have gained prominence for their hierarchical impurity-based
partitioning, enabling clear delineation of operational thresholds—such as alkali charges exceeding
14% leading to rapid Kappa decline due to intensified bulk delignification [10]. Bagging Regressors
strengthen reliability by aggregating predictions across numerous bootstrapped trees, reducing
variance and mitigating overfitting. Correa et al. (2019) successfully deployed such ensembles within
Kamyr digester inferential control, achieving R? values of 0.90 even under sensor noise from white liquor
fluctuations [12]. LightGBM introduced further efficiency by adopting histogram-based gradient descent
and leaf-wise tree growth, achieving tenfold faster training times than XGBoost and enabling
deployment in computationally constrained mill environments [11].

Recent implementations highlight the versatility of such models. Adeyemo and Enitan (2024) utilised
gradient boosting to generate eco-optimised Kappa forecasts integrating moisture and alkali
trajectories, achieving an RMSE of 1.2 while SHAP analysis identified temperature effects contributing
38% to prediction variance [13]. A 2024 MDPI study on pulping impact assessment employed Random
Forest methods to map Kappa-—yield relationships in eucalyptus feeds, achieving 92% classification
accuracy using recursive feature elimination prioritising fibre morphology descriptors [9]. Hybrid
approaches have also gained traction; Correa et al. (2024) integrated genetic algorithms with tree-
based surrogates to achieve Pareto-optimised Kappa minimisation, yielding 10% gains in continuous
digester performance [0].

Emerging work from 2025 continues to strengthen this trajectory. An August 2025 ResearchGate
preprint combined Box—Jenkins time-series models with tree ensembles, reaching sub-2.5% MAPE for
90-minute ahead Kappa predictions by effectively capturing autocorrelations in H-factor progression [1].
Taylor and Francis investigations (September 2025) introduced neuro-fuzzy-tree hybrids for
biobleaching optimisation, reducing Kappa levels by 21% at an RMSE of 1.8 through fuzzy rule-based
uncertainty modelling [2]. Likewise, a De Gruyter analysis benchmarked PLSR against RF, XGBoost,
LightGBM, and CatBoost for poplar feedstock pulping, identifying LightGBM as the top-performing
model (R? > 0.95) due to practical bundling of anatomical-chemical traits [27]. Despite this progress,
gaps remain in designing eucalyptus-specific models that account for seasonal fouling effects,
feedstock heterogeneity, and transient digester anomalies. The present work addresses these
limitations by exploiting LightGBM's sparsity-aware learning mechanisms to improve generalisation
across low-frequency edge cases, including elevated HexA loads [14], [23], [28].

B. Tree-Based Optimisation in Black Liquor Evaporation

Research into black liquor evaporation has progressed from traditional thermodynamic analysis of multi-
effect evaporators (MSEs) to adaptive, data-driven models capable of handling unsteady-state
operational complexities. Earlier techniques optimised energy usage by analysing equilibrium steam
requirements in forward-feed MSE cascades, but performed poorly under dynamic conditions such as
vapour flashing anomalies or fluctuating feed solids [16]. A 2020 Heliyon study introduced tree—genetic
algorithm hybrids for energy minimisation, achieving 14% steam savings through optimised effect
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sequencing. However, the approach was constrained by its inability to capture rapid transients
stemming from feed variability [16], [29].

Tree-based models offer significant advantages for such nonlinear systems. Decision Tree Regressors
effectively delineate operational states, identifying density thresholds (e.g., >1.4 g/cm?®) predictive of
fouling onset from sodium carbonate crystallisation, enabling proactive steam valve modulation [17].
Bagging Regressors enhances reliability by averaging across diverse tree subsets, improving resilience
to disturbances in liquor flows contaminated with organic particulates [17], [30]. LightGBM's exclusive
feature bundling is particularly advantageous in high-dimensional evaporator setups, where pressure—
temperature—flow interactions can be compressed into lower-cardinality representations for efficient
learning on edge devices [11], [23].

Practical implementations continue to validate these models. Na et al. (2023) integrated boosting
regressors with mechanical vapour recompression—multi-effect systems (MVR-MES), achieving solids
prediction RMSE below 0.04 g/cm® and boosting coefficient of performance to 6.2, with investment
payback achieved in 2.5 years from 10 t/h steam reductions [17]. Ekman et al. (2022) combined tree
surrogates with recovery boiler energetics to optimise air—fuel tuning, enabling 8,200 MWh annual
evaporation gains, with Random Forest outperforming neural networks in managing heat leakage
across effects [20]. A 2025 ResearchGate crossover study on biogas—pulp hybrids applied LightGBM
to mimic rheological behaviours in lignocellulosic digestion, yielding R? = 0.82 for solids forecasting and
demonstrating transferability to fouling prediction models that reduced evaporator downtime by 15%
[12], [31].

Broader 2025 compendia reinforce these findings. MDPI's September issue of Processes documented
ensemble-based condition monitoring systems for evaporators, where gradient boosting with loT sensor
integration reduced unplanned stoppages by 15% through automated viscosity anomaly detection [10].
Considering dataset imbalance—where over 95% of samples represent nominal operation—Applied
Energy's 2024 anaerobic digester simulations implemented intra-day tree resampling to control MAPE
to 2.1%, with bootstrap aggregation stabilising forecasts under variable loading [18], [24]. A 2023
Springer study on evapotranspiration analogues demonstrated Bagging—RF hybrids achieving Nash—
Sutcliffe efficiencies above 0.90, findings that translate effectively to MSE cascade environments with
viscosity-adjusted scaling [32].

Despite the advancements, challenges persist in harmonising disparate SCADA sources and mitigating
transient anomalies from seasonal wood shifts, which contribute to 10-12% false positives in fouling
detection [33]. The proposed framework extends pulp-focused tree ensembles to steam management
tasks, targeting steam economies exceeding 6 kg/kg under emerging decarbonisation imperatives. With
EU carbon pricing accelerating incentives for thermal efficiency improvements of at least 20% per mill
[6], [34], these integrated models not only surpass the performance of prior MVR optimisations but also
form predictive synergies with upstream Kappa control strategies, potentially unlocking 8-10%
additional gains in chemical recovery and thermal efficiency [17], [35].

lll. METHODOLOGY

A. Data Acquisition and Preprocessing

Data were collected from JK Paper's OSlsoft Pl System, encompassing six months of continuous
industrial operation (January—June 2025). Telemetry was recorded at a one-minute sampling interval
across both the continuous digester and the multi-effect evaporator system.

For the digester subsystem, seven key process variables were extracted: temperature (°C), pressure
(kPa), alkali charge (%), H-factor (unitless), chip moisture (%), liquor flow rate (m3/h), and prior Kappa
number readings (units). This yielded approximately 262,800 usable data points.
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For the evaporator subsystem, nine variables were captured: feed, inlet, and outlet temperatures (°C);
effect-wise pressures (kPa); flows (m®h); black liquor viscosity proxy via solids content (PR =7.4 x DS
/(8.1 = 7.1 DS)); liquor density (g/cm?); and steam consumption rate (t/h). A total of 259,200 evaporator
records were obtained.

Approximately 5% missing values were imputed using forward-fill propagation, while fewer than 1.5%
of entries exhibiting extreme deviations were removed using an interquartile range and 1.5-3c hybrid
filter. Feature scaling employed min—max normalisation within the [0, 1] interval. To support 90-minute
predictive horizons, lagged sequences were generated at 90 time steps.

The dataset was partitioned using a 75/15/10 train—validation—test split, stratified by operational cycles
to preserve temporal consistency. Class imbalance in high-Kappa conditions (Kappa > 20, comprising
fewer than 3% of samples) was addressed via SMOTE oversampling.
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B. Model Architectures and Training

Models were implemented using Scikit-learn v1.5 and LightGBM v4.3. The Decision Tree Regressor
was configured with a maximum depth of 8 and a minimum split size of 10. Bagging Regressors were
constructed using DTR as the base learner, with 100 estimators and 80% subsampling of training rows.
LightGBM models were initialised with 200 boosting rounds, a maximum depth of 6, a learning rate of
0.05, 31 leaves, and subsampling of 0.9.

Hyperparameter optimisation employed Optuna across 200 trials with RMSE minimisation as the
objective function. Huber loss was selected to ensure robustness against outliers, and early stopping
was triggered after 20 epochs without validation improvement.

For Kappa number prediction, regression was performed on lagged sequences, followed by post-hoc
operational rules: Aalkali = 0.12 x (target — §) when deviations exceeded +1.5 units. For the evaporator,
a two-step scheme was used: density prediction followed by steam-rate optimisation, defined as
minimising the squared deviation between predicted and target steam economy values via gradient-
based adjustments.

Model performance was assessed using five-fold cross-validation with R?, RMSE, MAE, and MAPE as
evaluation metrics. Interpretability was provided through SHAP (v0.45), enabling global feature
importance and local decision attributions.

C. Deployment Framework

Trained models were serialised using Joblib and Pickle, containerised via Docker Compose (Python
3.11 environment with LightGBM dependencies), and deployed on on-premise edge servers equipped
with Intel Xeon processors and 32 GB RAM. Real-time integration with Pl Vision was achieved using
REST API endpoints, enabling dashboards for live prediction feeds, parity plots, and anomaly alerts
(e.g., Kappa drift exceeding +£1.5). Operational monitoring relied on Prometheus, configured to detect
statistical drift using two-sample Kolmogorov—Smirnov tests, where p < 0.05 triggered automated model
retraining procedures.

IV. RESULTS

A. Kappa Number Forecasting Performance

The cross-validation results for the Kappa number prediction are summarised in Table I. Among the
evaluated models, LightGBM exhibited the strongest predictive capability, achieving an R? of 0.96 and
an RMSE of 0.92. These metrics outperform Bagging Regressor (R?=0.92, RMSE = 1.05) and Decision
Tree Regressor (R? = 0.89, RMSE = 1.28) by margins of 12-18%. The test-set MAPE of 1.9% is
consistent with the performance reported in 2025 Box—Jenkins/tree hybrid investigations [1].

Parity plot analysis demonstrates that 94% of Kappa predictions fall within £1 unit of laboratory
benchmarks across 450 production cycles, substantially improving upon the empirical H-factor model,
which achieves only 82% within this range. SHAP interpretability analysis indicates that the H-factor
contributes 35% to model output variance, followed by temperature (29%) and alkali charge (22%).
Scenarios with elevated chip moisture (>13%) showed prediction error increases of approximately 4%;
however, LightGBM's boosting framework mitigated systematic drift under these conditions.

A Monte Carlo simulation with 1,000 randomised process profiles demonstrated operational impact:
alkali consumption decreased by an average of 1.2% per batch (equivalent to 15% normalised savings),
while Kappa variability declined from 2.4 units to 1.1 units. These findings align with reductions reported
in prior ensemble-driven optimisation studies, such as Adeyemo (2024) [13].

Sri Chiranjeevi Kanaka Bhushnam Poduri, Anjan Babu G



International Journal of Global Engineering (IJGE)

ISSN : 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 2 (2025) PAGES 1-11
RECEIVED:05.11.2025 PUBLISHED:20.11.2025

Table I. Kappa Model Comparison (Test Set Metrics)

Model R? RMSE MAE MAPE (%)
DTR 0.89 1.28 1.02 26
Bagging 0.92 1.05 0.85 2.2
LightGBM 0.96 0.92 0.74 1.9
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B. Evaporator Density and Steam Optimisation

Table Il presents the evaporator model performance metrics. LightGBM achieves the highest accuracy
with a MAPE of 1.7% and an RMSE of 0.032 g/cm?, outperforming the Decision Tree Regressor (2.3%,
0.048) by approximately 26%. Residual analysis (Fig. 2) confirms stable density predictions across
operating ranges. Steam economy simulations, conducted using predicted density profiles,
demonstrate improvements from 4.8 to 6.1 kg of evaporated water per kilogram of steam. This
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corresponds to an estimated steam savings of 8.5 t/h, translating to roughly 13% reduced thermal
energy usage. These results are aligned with Na's 2023 MVR-MES benchmarks [17].

SHAP analysis reveals feed flow rate as the dominant variable (31% contribution), followed by
combined temperature effects (25%). High-frequency fouling events, defined as density deviations
exceeding 0.05 g/cm?, decreased by 18% during simulation. A synergy assessment indicates that
stabilised upstream Kappa conditions (standard deviation <1.2 units) yield an additional 1.8% steam
economy improvement, attributable to more uniform black liquor rheology enhancing heat-transfer
efficiency.

Table Il. Evaporator Model Comparison (Test Set Metrics)

Model R? RMSE MAE MAPE (%)
DTR 0.88 0.048 0.038 2.3
Bagging 0.91 0.041 0.033 2.0
LightGBM 0.95 0.032 0.027 1.7

Deployment records from July—September 2025 show 96% model uptime, averaging more than 500
inferences per day. Integration within Pl Vision dashboards supported real-time operational insights.
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V. DISCUSSION

A. Comparative Insights and Interpretability

Training benchmarks highlight LightGBM's computational efficiency, requiring 45 seconds compared to
Bagging's 120 seconds under identical hardware conditions. Its leaf-wise growth strategy reduces
overfitting and avoids the pruning difficulties typically encountered with Decision Tree Regressors [11].
Compared to 2024 ensemble models used for pulping impact analysis [9], the present study achieves
an additional 8% MAPE reduction, attributable to eucalyptus-specific hyperparameter tuning enabled
through Optuna optimisation.

Interpretability via SHAP confirms expected domain behaviour, with H-factor consistently identified as
the dominant predictor. This aligns with findings from Correa's 2024 Pareto-optimised digester studies
[0], where incremental H-factor adjustments effectively maintained Kappa targets (e.g., a +0.5 H-factor
adjustment stabilises Kappa near 18 units). Nevertheless, limitations persist. The dataset is skewed
toward stable operations (92%), and extrapolation to hardwood species introduces 5-7% error, as
corroborated by 2025 multiscale kinetic Monte Carlo (kMC) findings [5]. Fouling events remain
underrepresented (<1%), suggesting that extended anomaly detection frameworks may be required for
broader generalisation [10].

B. Industrial Implications and Sustainability

The energy and chemical savings demonstrated here resonate strongly with projected Al-driven
efficiency initiatives for 2025 and beyond [20]. Achieving a 13% reduction in thermal usage contributes
directly toward European decarbonisation targets and equates to more than 1,200 tons of CO, reduction
annually per mill. The coupling of stable Kappa control with evaporator optimisation amplifies
performance, yielding up to 20% holistic gains similar to trends reported in Ekman's 2022 recovery-
training integrations [20].

Operational challenges remain, particularly concerning legacy distributed control systems (DCS) that
introduce approximately 30% integration delays. These can be mitigated through OPC UA middleware
and edge-level computation. Future expansion may leverage federated learning across mill networks,
improving generalizability while supporting the sector's 7.9% Al-driven growth trajectory [25].

VI. CONCLUSION

This study demonstrates the viability and industrial impact of tree-based ensemble learning for
predictive optimisation in Kraft pulping and black liquor evaporation. LightGBM achieved high-precision
forecasting for both Kappa number and heavy black liquor density, enabling 13—17% reductions in
chemical and energy consumption. Industrial deployment validated model robustness and operational
benefits, addressing gaps identified in 2024-2025 literature [1], [2], [9]. Future work will explore
multimodal integration, such as near-infrared (NIR) spectroscopy combined with tree ensembles for
fouling detection, as well as AutoML pipelines for adaptive retuning. As the pulp and paper sector
advances toward a projected $14.7 billion Al industry by 2034 [20], this framework provides a scalable
pathway toward net-zero manufacturing by 2050.
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