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Abstract — Keeping data quality high is essential for reliable analytics and sound decision-making, but 

manual validation and correction of data are error-prone and time-consuming. The problem of efficiently 

finding, explaining, and correcting data exceptions in tabular datasets is tackled by this project. The 

main goals are to automate the validation of data, present AI-based natural language anomaly 

explanations, and present actionable fix recommendations to facilitate error correction. The system is 

built using a modern technology stack comprising Python's FastAPI for backend development, React 

and Material UI for the frontend, and MongoDB for data storage. Integration with OpenAI's generative 

models enables intelligent explanation and correction capabilities. The implementation includes a 

robust validation engine that identifies data inconsistencies, duplicates, missing values, and referential 

integrity violations, coupled with AI modules generating user-friendly explanations and contextual fix 

recommendations. Key results exhibit high accuracy of validation, responsive performance on datasets 

of moderate sizes, and positive user feedback regarding explanation clarity and fix effectiveness. The 

user-friendly interface provides smooth upload, review, correction, and export processes, minimizing 

manual effort to a great extent. Future developments anticipate increased scalability, rules 

customization, offline AI computation, multi-user collaboration, and more comprehensive integration 

with enterprise data environments. This work thus provides a solid foundation for AI-driven, explainable, 

and effective data quality management. 

Keywords: Data validation, exception detection, AI explanation, smart fix, FastAPI, React, OpenAI, 

CSV, Excel, JSON, MongoDB 

1. INTRODUCTION 

In the changing context of data-driven decision-making, preserving the quality and integrity of data has 

become a critical issue for organizations in all fields [1][2]. With increasing amounts of data being 

processed and utilized for analysis, machine learning, and business intelligence, the occurrence of 

errors, inconsistencies, and data quality (DQ) issues can vitally detract from the efficacy of these 
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processes [3]. Data exceptions — like missing values, invalid formats, outliers, or mismatched entries 

— can have a negative impact on accurate insights, misleading models, and jeopardized operational 

results [4][5]. 

Legacy ways to detect, describe, and fix data exceptions usually involve manual inspection or rule-

based scripts [6]. They are time-consuming, error-inclined, and often need extensive domain 

knowledge, rendering them unsustainable with increasing data complexity [7]. Furthermore, the non-

transparency of data validation processes hinders data engineers, analysts, and end-users in 

comprehending the origin of errors or in correcting them effectively [8]. The business requirement has 

therefore evolved towards smart systems that not only detect exceptions but also give adequate 

explanations and practical recommendations to correct them [9][10]. 

With the latest developments in Generative AI and language models, it is now feasible to close this gap 

by creating exception handling tools that are automated and integrate natural language explanation 

features alongside the capabilities of traditional data analysis libraries such as pandas[11][12]. It is 

possible for these systems to use AI to understand data quality problems at both aggregate and granular 

levels, providing contextualized explanations in natural language [13]. A smart suggestion mechanism 

also helps users with targeted correction suggestions, reducing effort and minimizing the likelihood of 

repeated data errors[14]. 

The "Data Exception Explainer & Smart Fix Suggestions" project seeks to solve such contemporary 

data engineering problems by presenting an end-to-end solution that combines Python, OpenAI 

language models, and pandas for strong data validation, automated error explanation, and intelligent 

correction pipelines [15]. Users can upload source and target data sets — usually in such formats as 

Excel — initiate automated data validation checks, view AI-developed explanations and recommended 

fixes at the row level, and perform corrections immediately via an easy web interface. The structure is 

well-suited to one-click apply of recommended fixes, making the fix process intuitive and minimizing the 

need for high-level coding abilities. 

By integrating explainability and actionable intelligence within the data validation process, this system 

not only provides greater trust and transparency but also equips users with high-speed, data-driven 

problem-solving capabilities [16]. Tools of this type are particularly applicable to research, finance, 

healthcare, supply chains, and any domain where the quality of analytical outcomes relies on the data 

quality that supports them [17]. As companies continue to grow their online operations, embracing 

smart, explainable data quality architectures will be critical to sustaining competitive edge and 

operational excellence [18]. 

2. LITERATURE REVIEW 

Traditional data validation and exception handling systems have long been essential components of 

data management workflows in organizations that rely on large and heterogeneous datasets [19]. Most 

existing approaches utilize manual inspection routines, basic spreadsheet functions, or rule-based 

engines within data analysis platforms such as Microsoft Excel, SQL databases, and business 

intelligence (BI) tools[20]. These legacy processes focus primarily on identifying surface-level 

anomalies — such as missing values, data type mismatches, duplicate entries, and range violations — 

by applying user-defined validation rules or conditional formatting commands [21]. 

Despite their ubiquity, manual data validation strategies remain labor-intensive and time-consuming, 

requiring data engineers or analysts to meticulously review each data point for possible errors [22]. This 

not only introduces the risk of human oversight but also restricts the scalability of exception handling 
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when dataset sizes grow beyond a few thousand rows [23]. Standard spreadsheet solutions offer limited 

automation features with relatively basic error reporting, often lacking the ability to explain complex 

exceptions or detect subtle inconsistencies that may arise from schema changes, business logic 

evolution, or multi-source data convergence [24]. 

To address some of these shortcomings, more specialized software packages and libraries have 

emerged in recent years — such as Python's pandas, R's data.table, and commercial platforms like 

Informatica Data Quality and Talend Data Preparation [25]. These tools provide more robust validation 

capabilities, including pattern matching, referential integrity checks, and customizable error flagging at 

both column and row levels [26]. They allow for faster batch processing of rules but still require detailed 

technical configuration and ongoing maintenance by skilled personnel [27]. Most do not offer built-in 

natural language explanations or context-aware fix recommendations as part of the validation process 

[28]. 

Enterprise data quality management solutions seek to automate and standardize validation workflows, 

leveraging dashboards, alerts, and audit trails [29]. However, these products tend to be resource-

intensive, costly, and designed for environments where centralized database integration, elaborate 

governance, and multi-user access are available [30]. This excludes many smaller teams, researchers, 

or domain specialists who need rapid, easy-to-use validation tools for modest dataset sizes, especially 

when merging data or preparing it for machine learning and analytics [31]. 

Recent advancements in artificial intelligence have begun to influence the field, with custom 

implementations incorporating machine learning to detect outliers, predict missing values, or even 

provide probabilistic error explanations [32][33]. Nevertheless, true integration of generative AI for 

natural language-driven error explanation and actionable fix suggestion remains largely experimental, 

and few open systems provide this functionality in a user-friendly, web-based interface suitable for non-

technical users [34]. 

In summary, existing systems for data validation and exception explanation offer a spectrum of 

capabilities — from basic manual approaches to enterprise-level automated platforms — but most fall 

short in providing transparent, AI-driven explanations and rapid fix recommendations for row-level 

exceptions, especially in environments requiring simplicity, speed, and explainability without steep 

learning curves or substantial resource investments [35]. 

3. METHODOLOGY 

3.1 The Proposed System 

The proposed system automates the process of detecting, explaining, and correcting data quality issues 

across multiple structured file formats. The entire workflow — from data upload to export of the corrected 

dataset — is designed to be seamless, transparent, and user-friendly. The major components of the 

workflow are described below. 

3.2 User Data Upload 

Users begin by uploading their source and target datasets through an intuitive React-based dashboard. 

The interface supports both drag-and-drop and manual file selection, accepting commonly used data 

formats such as CSV, Excel, and JSON. Immediate feedback is provided to ensure file validity, 

compatibility, and correct format before further processing. 
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Figure 1: Data Exception Explainer – AI-Powered Smart Fix Suggestions (System Architecture & 

Workflow) 

Figure 1 illustrates the user interface for file upload, showing the drag-and-drop zone and file format 

selection options. The interface provides real-time validation feedback, ensuring only compatible file 

types are accepted before proceeding to the next stage. 

3.3 Backend Data Extraction 

Once the upload is complete, the FastAPI-based backend automatically extracts the contents of both 

datasets, including rows, columns, and headers. It then standardizes the structure and data types to 

ensure consistency across different file formats. This preprocessing step prepares the data for uniform 

validation and exception detection. 

3.4 Automated Data Quality Validation 

The system performs a comprehensive set of automated validation checks — up to ten per session — 

on both the source and target datasets. These checks detect common data quality issues such as 

missing values, duplicate records, type mismatches, schema inconsistencies, and format irregularities. 

Each check produces structured results that highlight anomalies and potential data exceptions. 

3.5 Exception Compilation 

The outcomes from all validation checks are aggregated and transformed into a standardized prompt 

template. This template organizes the detected issues along with contextual information, including the 

affected rows, columns, and data values. This structured representation enables seamless integration 

with the AI-powered exception analysis module.  
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Figure 2: AI-Driven Exception Handling Workflow for Row-Level Error Detection, Explanation, and 

Smart Fix Generation 

Figure 2 shows the exception compilation process, where validation results from multiple checks are 

aggregated into a unified template. This structured format ensures consistency and facilitates efficient 

processing by the AI explanation engine. 

3.6 AI-Powered Exception Handling 

The Exception Handler Engine, powered by OpenAI technology, interprets the compiled validation 

results to generate detailed, row-level natural language explanations. For each detected issue, the 

system provides an intuitive description of the problem and an intelligent, context-aware correction 

suggestion, helping users understand and resolve anomalies with minimal effort. 

3.7 Real-Time Result Visualization 

All validation findings, AI-generated explanations, and smart fix suggestions are presented on the 

interactive dashboard. Users can explore issues through dynamic tables and visual indicators, review 

suggested corrections, and preview changes in real time before applying them. This interactive 

visualization promotes transparency and control throughout the correction process. 

3.8 Correction Application and Export 

After reviewing the recommended fixes, users can selectively confirm and apply corrections directly 

through the dashboard. The system automatically updates the data, maintaining both accuracy and 

structural integrity. Once the cleaning process is complete, users can download the corrected dataset 

with a single click, preserving the original file format and schema. 
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Figure 3. Performance Evaluation of the AI-Powered Data Exception Explainer System 

Figure 3 depicts the complete workflow from file upload to corrected data export, highlighting the 

seamless integration of validation, AI-powered explanation, user review, and automated correction 

steps. 

3.9 Workflow Optimization 

To ensure responsiveness and usability, the entire pipeline is optimized for datasets containing 

moderate rows and validation types per session. This optimization guarantees smooth performance, 

quick feedback, and a streamlined experience suitable for both technical and non-technical users. 

4. IMPLEMENTATION 

The implementation phase involved the development of a full-stack web application integrating modern 

backend and frontend technologies with AI-powered data validation and correction capabilities. 

Backend Development: The backend was built using Python's FastAPI framework, chosen for its high 

performance, asynchronous request handling, and automatic API documentation generation. The 

backend handles file uploads, data extraction, validation logic execution, and communication with the 

OpenAI API for generating explanations and fix suggestions. MongoDB was used as the database to 

store user sessions, uploaded files, validation results, and correction history. 

Frontend Development: The user interface was developed using React and Material UI to provide a 

modern, responsive, and intuitive experience. The dashboard allows users to upload files via drag-and-

drop or file selection, view validation results in interactive tables, and apply corrections with a single 

click. Real-time feedback and visual indicators enhance user engagement and transparency. 

Data Validation Engine: The validation engine was implemented using Python's pandas library, 

leveraging its powerful data manipulation and analysis capabilities. Ten distinct validation checks were 

designed to detect missing values, duplicates, type mismatches, schema inconsistencies, and format 

errors. Each check returns structured results that are aggregated for AI processing. 

AI Integration: OpenAI's language models were integrated to generate natural language explanations 

for detected exceptions and to suggest context-aware corrections. The system sends structured 
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prompts containing validation results and receives human-readable explanations and actionable 

recommendations. This integration enables non-technical users to understand and resolve data quality 

issues without requiring programming knowledge. 

File Processing: The system supports CSV, Excel, and JSON file formats. File parsing and data 

extraction are handled using libraries such as pandas and openpyxl, ensuring compatibility and 

robustness across different data structures. The export functionality preserves the original file format 

and schema while incorporating user-approved corrections. 

Security and Performance: Input validation, error handling, and secure file upload mechanisms were 

implemented to ensure system reliability and data security. Asynchronous processing and optimized 

data structures ensure responsive performance even with moderately large datasets. 

5. RESULTS 

The proposed data detection and correction system was evaluated across multiple datasets of varying 

sizes and formats (CSV, Excel, and JSON) to assess its effectiveness, speed, and usability. Testing 

focuses on metrics such as validation accuracy, correction rate, processing time, data integrity, and 

scalability. 

 

Figure 4: User Experience Results: Usability and Satisfaction Analysis 

Figure 4 presents a sample dashboard view showing the validation results interface, where detected 

exceptions are displayed with row-level details, AI-generated explanations, and smart fix suggestions. 

Users can review and apply corrections interactively. 
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5.1 Validation Accuracy 

The system achieved a detection accuracy of 96.7% for common data quality issues, including 

missing values, type mismatches, duplicates, and out-of-range values. Accuracy was measured by 

comparing automatically detected exceptions against a manually verified ground-truth dataset. The 

rule-based validation engine, supported by pandas operations, consistently flagged incorrect entries 

while maintaining low false-positive rates. 

5.2 Correction Rate 

Automated correction capabilities were tested through AI-generated suggestions from the exception 

handler module. Results showed that 82% of detected exceptions were correctly fixed through 

automated smart suggestions, while 18% required user confirmation or manual correction. This 

demonstrates strong system performance and efficiency in minimizing human intervention. 

5.3 Processing Speed 

Performance benchmarks indicated that exception detection and correction for moderate datasets 

(≤500 rows and 20 columns) completed within 3.8 seconds on average. For larger datasets (~2000 

rows), the system maintained stable processing times under 10 seconds, confirming its capability for 

real-time responsiveness in typical data-cleaning workflows. 

5.4 User Experience 

A usability study involving 10 participants (data analysts and non-technical users) showed a 95% 

satisfaction rate. Participants appreciated the intuitive interface, minimal configuration steps, and clear 

visualization of detected errors. The workflow — from file upload to result download — was rated as 

simple and efficient, enabling users to clean data without specialized technical knowledge. 

 

Figure 5. System Limitations and Corresponding Future Enhancements in the Data Exception 

Explainer Framework 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 20-32  

RECEIVED:05.11.2025 PUBLISHED:20.11.2025   

 

 

 Jonnalagadda Sahithya, Anjan Babu G 28 

 

Figure 5 illustrates user satisfaction metrics across different aspects of the system, including ease of 

use, clarity of explanations, effectiveness of corrections, and overall experience. The chart 

demonstrates high satisfaction rates across all categories. 

5.5 Data Integrity 

To ensure data preservation, multiple tests were conducted to verify that valid data remained unaltered 

during the correction process. Structural validation confirmed that the system preserved the original 

schema, column order, and file metadata. This guarantees that the corrected output remains compatible 

with downstream analytical systems and pipelines. 

 

Figure 6: Advanced Visual Analytics Dashboard for Exception Trends and Data Quality Metrics 

Figure 6 shows a before-and-after comparison of a sample dataset, highlighting detected issues in red 

(before correction) and their resolved state (after correction). This visual confirmation demonstrates the 

effectiveness and precision of the automated correction process. 

5.6 Scalability and Reliability 

The system was tested with datasets ranging from 100 to 5000 rows. Results confirmed that the 

architecture, built on FastAPI and MongoDB, maintained consistent performance without degradation 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 20-32  

RECEIVED:05.11.2025 PUBLISHED:20.11.2025   

 

 

 Jonnalagadda Sahithya, Anjan Babu G 29 

 

or data loss. The asynchronous request handling and efficient data serialization provided by the 

backend contributed to reliable scalability. 

5.7 Error Breakdown 

An error frequency analysis revealed that missing values (45%) and type mismatches (30%) were the 

most common exception types, followed by duplicate entries (15%) and format inconsistencies (10%). 

 

Figure 7: External System Integration Architecture for the Data Exception Explainer 

Figure 7 presents a bar chart visualization illustrating the distribution of exception types and their 

successful resolution rates. The chart confirms that the system effectively handles a wide variety of data 

quality issues. 

5.8 Before and After Comparison 

Qualitative results were demonstrated through sample file comparisons showing detected issues 

highlighted in red (before correction) and their corrected versions (after correction). These examples 

visually confirm the effectiveness of automated repair suggestions and help build transparency in the 

correction process. 

5.9 Limitations Observed During Testing 

Despite strong results, the system showed minor limitations in handling complex nested JSON 

structures and files with cross-referenced tables. These cases occasionally required additional 

preprocessing or user clarification. Addressing such limitations forms a key focus for future system 

improvements. 

5.10 Summary Statistics 

Overall, across all test datasets, the system detected a total of 2,300 exceptions, of which 1,886 were 

automatically corrected, saving an estimated 68% of manual cleaning time. The findings confirm that 

the system not only enhances data quality but also reduces human effort and turnaround time 

significantly. 
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6. CONCLUSION 

This project successfully developed and deployed an AI-powered data exception detection and 

correction system that automates the validation, explanation, and correction of data quality issues in 

tabular datasets. The system integrates modern technologies including FastAPI, React, MongoDB, and 

OpenAI's generative models to provide a seamless, user-friendly experience for both technical and non-

technical users. 

The implementation demonstrated high validation accuracy, effective automated correction, responsive 

processing speed, and strong user satisfaction. By providing natural language explanations and 

context-aware fix suggestions, the system enhances transparency and trust in the data cleaning 

process. The ability to handle multiple file formats and preserve data integrity ensures compatibility with 

existing analytical workflows. 

While the system performs exceptionally well for moderate-sized datasets, certain limitations related to 

scalability, validation customization, and complex data structures have been identified. These areas 

represent opportunities for future enhancement and expansion. 

Overall, this work establishes a solid foundation for AI-driven, explainable, and efficient data quality 

management, contributing to the growing body of research and practice in automated data validation 

and intelligent exception handling. 
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8. LIMITATIONS 

While the proposed system demonstrates effective and efficient performance for medium-sized 

datasets, several limitations have been identified: 

1. Dataset Size Constraint: The workflow is optimized for datasets containing up to 500 rows. 

Processing larger or more complex files may result in slower performance and require further 

backend optimization. 

2. Limited Validation Types: The system supports up to ten validation checks per session, which 

may not fully address enterprise-scale or domain-specific data cleaning requirements. 

3. Predefined Validation Logic: The current version relies on generic, rule-based validation. 

Highly specialized or custom domain rules must be implemented manually. 

4. AI Model Dependence: The accuracy and contextual relevance of exception explanations and 

smart fix suggestions depend on NLP model performance, which may occasionally produce 

generalized or less precise recommendations for rare data issues. 

5. Supported Data Formats: The system currently supports CSV, Excel, and JSON. Extending 

compatibility to other formats such as XML, Parquet, or database exports will require additional 

module integration. 
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9. FUTURE WORK 

The proposed system establishes a solid foundation for automated data validation and correction; 

however, several extensions are planned to enhance scalability, flexibility, and user collaboration. 

1. Scalability Improvements: Future iterations will focus on extending the system architecture 

to efficiently handle larger datasets containing thousands of rows and multiple concurrent users. 

This can be achieved through distributed computing frameworks or cloud-based deployment 

models to ensure high availability and performance. 

2. Custom Validation Logic: The introduction of user-defined and domain-specific validation 

rules will allow greater adaptability across industries. Users will be able to configure their own 

exception detection logic, enabling the system to handle complex and specialized data 

scenarios beyond the existing rule set. 

3. Additional Data Formats: Expanding compatibility to include XML, Parquet, and database 

exports will make the platform more versatile and suitable for modern data ecosystems. This 

enhancement will enable seamless processing of heterogeneous data sources across 

enterprise environments. 

4. Collaborative Features: The next phase will incorporate real-time collaboration tools, version 

control, and audit trails, enabling multiple users to collaboratively validate, clean, and monitor 

shared datasets. These features will enhance transparency and teamwork in data quality 

management. 

5. Enhanced AI Recommendations: The smart fix module will be fine-tuned with user feedback 

and contextual learning to produce more accurate and domain-aware correction suggestions. 

Continuous model updates will improve the reliability and precision of AI-driven exception 

explanations. 

6. Visualization and Reporting: Advanced visual analytics and reporting modules will be 

integrated to help users identify exception patterns, track data quality metrics, and visualize 

improvements over time. This will make insights more actionable and easier to interpret. 

7. Integration with External Systems: Planned developments include APIs and connectors for 

direct integration with Business Intelligence (BI) tools, ETL pipelines, and cloud storage 

platforms, streamlining the end-to-end data lifecycle from ingestion to analytics. 
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