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Abstract — Keeping data quality high is essential for reliable analytics and sound decision-making, but
manual validation and correction of data are error-prone and time-consuming. The problem of efficiently
finding, explaining, and correcting data exceptions in tabular datasets is tackled by this project. The
main goals are to automate the validation of data, present Al-based natural language anomaly
explanations, and present actionable fix recommendations to facilitate error correction. The system is
built using a modern technology stack comprising Python's FastAPI for backend development, React
and Material Ul for the frontend, and MongoDB for data storage. Integration with OpenAl's generative
models enables intelligent explanation and correction capabilities. The implementation includes a
robust validation engine that identifies data inconsistencies, duplicates, missing values, and referential
integrity violations, coupled with Al modules generating user-friendly explanations and contextual fix
recommendations. Key results exhibit high accuracy of validation, responsive performance on datasets
of moderate sizes, and positive user feedback regarding explanation clarity and fix effectiveness. The
user-friendly interface provides smooth upload, review, correction, and export processes, minimizing
manual effort to a great extent. Future developments anticipate increased scalability, rules
customization, offline Al computation, multi-user collaboration, and more comprehensive integration
with enterprise data environments. This work thus provides a solid foundation for Al-driven, explainable,
and effective data quality management.

Keywords: Data validation, exception detection, Al explanation, smart fix, FastAPI, React, OpenAl,
CSV, Excel, JSON, MongoDB

1. INTRODUCTION

In the changing context of data-driven decision-making, preserving the quality and integrity of data has
become a critical issue for organizations in all fields [1][2]. With increasing amounts of data being
processed and utilized for analysis, machine learning, and business intelligence, the occurrence of
errors, inconsistencies, and data quality (DQ) issues can vitally detract from the efficacy of these

Jonnalagadda Sahithya, Anjan Babu G 20


mailto:jonnalagaddasahithya@gmail.com
mailto:gabsvu@gmail.com

International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 20-32
RECEIVED:05.11.2025 PUBLISHED:20.11.2025

processes [3]. Data exceptions — like missing values, invalid formats, outliers, or mismatched entries
— can have a negative impact on accurate insights, misleading models, and jeopardized operational
results [4][5].

Legacy ways to detect, describe, and fix data exceptions usually involve manual inspection or rule-
based scripts [6]. They are time-consuming, error-inclined, and often need extensive domain
knowledge, rendering them unsustainable with increasing data complexity [7]. Furthermore, the non-
transparency of data validation processes hinders data engineers, analysts, and end-users in
comprehending the origin of errors or in correcting them effectively [8]. The business requirement has
therefore evolved towards smart systems that not only detect exceptions but also give adequate
explanations and practical recommendations to correct them [9][10].

With the latest developments in Generative Al and language models, it is now feasible to close this gap
by creating exception handling tools that are automated and integrate natural language explanation
features alongside the capabilities of traditional data analysis libraries such as pandas[11][12]. It is
possible for these systems to use Al to understand data quality problems at both aggregate and granular
levels, providing contextualized explanations in natural language [13]. A smart suggestion mechanism
also helps users with targeted correction suggestions, reducing effort and minimizing the likelihood of
repeated data errors[14].

The "Data Exception Explainer & Smart Fix Suggestions" project seeks to solve such contemporary
data engineering problems by presenting an end-to-end solution that combines Python, OpenAl
language models, and pandas for strong data validation, automated error explanation, and intelligent
correction pipelines [15]. Users can upload source and target data sets — usually in such formats as
Excel — initiate automated data validation checks, view Al-developed explanations and recommended
fixes at the row level, and perform corrections immediately via an easy web interface. The structure is
well-suited to one-click apply of recommended fixes, making the fix process intuitive and minimizing the
need for high-level coding abilities.

By integrating explainability and actionable intelligence within the data validation process, this system
not only provides greater trust and transparency but also equips users with high-speed, data-driven
problem-solving capabilities [16]. Tools of this type are particularly applicable to research, finance,
healthcare, supply chains, and any domain where the quality of analytical outcomes relies on the data
quality that supports them [17]. As companies continue to grow their online operations, embracing
smart, explainable data quality architectures will be critical to sustaining competitive edge and
operational excellence [18].

2. LITERATURE REVIEW

Traditional data validation and exception handling systems have long been essential components of
data management workflows in organizations that rely on large and heterogeneous datasets [19]. Most
existing approaches utilize manual inspection routines, basic spreadsheet functions, or rule-based
engines within data analysis platforms such as Microsoft Excel, SQL databases, and business
intelligence (BIl) tools[20]. These legacy processes focus primarily on identifying surface-level
anomalies — such as missing values, data type mismatches, duplicate entries, and range violations —
by applying user-defined validation rules or conditional formatting commands [21].

Despite their ubiquity, manual data validation strategies remain labor-intensive and time-consuming,
requiring data engineers or analysts to meticulously review each data point for possible errors [22]. This
not only introduces the risk of human oversight but also restricts the scalability of exception handling

Jonnalagadda Sahithya, Anjan Babu G 21



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 20-32
RECEIVED:05.11.2025 PUBLISHED:20.11.2025

when dataset sizes grow beyond a few thousand rows [23]. Standard spreadsheet solutions offer limited
automation features with relatively basic error reporting, often lacking the ability to explain complex
exceptions or detect subtle inconsistencies that may arise from schema changes, business logic
evolution, or multi-source data convergence [24].

To address some of these shortcomings, more specialized software packages and libraries have
emerged in recent years — such as Python's pandas, R's data.table, and commercial platforms like
Informatica Data Quality and Talend Data Preparation [25]. These tools provide more robust validation
capabilities, including pattern matching, referential integrity checks, and customizable error flagging at
both column and row levels [26]. They allow for faster batch processing of rules but still require detailed
technical configuration and ongoing maintenance by skilled personnel [27]. Most do not offer built-in
natural language explanations or context-aware fix recommendations as part of the validation process
[28].

Enterprise data quality management solutions seek to automate and standardize validation workflows,
leveraging dashboards, alerts, and audit trails [29]. However, these products tend to be resource-
intensive, costly, and designed for environments where centralized database integration, elaborate
governance, and multi-user access are available [30]. This excludes many smaller teams, researchers,
or domain specialists who need rapid, easy-to-use validation tools for modest dataset sizes, especially
when merging data or preparing it for machine learning and analytics [31].

Recent advancements in artificial intelligence have begun to influence the field, with custom
implementations incorporating machine learning to detect outliers, predict missing values, or even
provide probabilistic error explanations [32][33]. Nevertheless, true integration of generative Al for
natural language-driven error explanation and actionable fix suggestion remains largely experimental,
and few open systems provide this functionality in a user-friendly, web-based interface suitable for non-
technical users [34].

In summary, existing systems for data validation and exception explanation offer a spectrum of
capabilities — from basic manual approaches to enterprise-level automated platforms — but most fall
short in providing transparent, Al-driven explanations and rapid fix recommendations for row-level
exceptions, especially in environments requiring simplicity, speed, and explainability without steep
learning curves or substantial resource investments [35].

3. METHODOLOGY

3.1 The Proposed System

The proposed system automates the process of detecting, explaining, and correcting data quality issues
across multiple structured file formats. The entire workflow — from data upload to export of the corrected
dataset — is designed to be seamless, transparent, and user-friendly. The major components of the
workflow are described below.

3.2 User Data Upload

Users begin by uploading their source and target datasets through an intuitive React-based dashboard.
The interface supports both drag-and-drop and manual file selection, accepting commonly used data
formats such as CSV, Excel, and JSON. Immediate feedback is provided to ensure file validity,
compatibility, and correct format before further processing.
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Figure 1: Data Exception Explainer — Al-Powered Smart Fix Suggestions (System Architecture &
Workflow)

Figure 1 illustrates the user interface for file upload, showing the drag-and-drop zone and file format
selection options. The interface provides real-time validation feedback, ensuring only compatible file
types are accepted before proceeding to the next stage.

3.3 Backend Data Extraction

Once the upload is complete, the FastAPI-based backend automatically extracts the contents of both
datasets, including rows, columns, and headers. It then standardizes the structure and data types to
ensure consistency across different file formats. This preprocessing step prepares the data for uniform
validation and exception detection.

3.4 Automated Data Quality Validation

The system performs a comprehensive set of automated validation checks — up to ten per session —
on both the source and target datasets. These checks detect common data quality issues such as
missing values, duplicate records, type mismatches, schema inconsistencies, and format irregularities.
Each check produces structured results that highlight anomalies and potential data exceptions.

3.5 Exception Compilation

The outcomes from all validation checks are aggregated and transformed into a standardized prompt
template. This template organizes the detected issues along with contextual information, including the
affected rows, columns, and data values. This structured representation enables seamless integration
with the Al-powered exception analysis module.
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Figure 2: Al-Driven Exception Handling Workflow for Row-Level Error Detection, Explanation, and
Smart Fix Generation

Figure 2 shows the exception compilation process, where validation results from multiple checks are
aggregated into a unified template. This structured format ensures consistency and facilitates efficient
processing by the Al explanation engine.

3.6 Al-Powered Exception Handling

The Exception Handler Engine, powered by OpenAl technology, interprets the compiled validation
results to generate detailed, row-level natural language explanations. For each detected issue, the
system provides an intuitive description of the problem and an intelligent, context-aware correction
suggestion, helping users understand and resolve anomalies with minimal effort.

3.7 Real-Time Result Visualization

All validation findings, Al-generated explanations, and smart fix suggestions are presented on the
interactive dashboard. Users can explore issues through dynamic tables and visual indicators, review
suggested corrections, and preview changes in real time before applying them. This interactive
visualization promotes transparency and control throughout the correction process.

3.8 Correction Application and Export

After reviewing the recommended fixes, users can selectively confirm and apply corrections directly
through the dashboard. The system automatically updates the data, maintaining both accuracy and
structural integrity. Once the cleaning process is complete, users can download the corrected dataset
with a single click, preserving the original file format and schema.

Jonnalagadda Sahithya, Anjan Babu G 24



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 20-32
RECEIVED:05.11.2025 PUBLISHED:20.11.2025

Performance Benchmark Before vs. After Correction
100% 20%

80%
15%

60%
10%

40%
5%

20%
0% 0%

Validation Correction Processing
Accuracy Rate Time

Before After
Correction Correction

[ Before Correction [l After
Correction

Figure 3. Performance Evaluation of the Al-Powered Data Exception Explainer System

Figure 3 depicts the complete workflow from file upload to corrected data export, highlighting the
seamless integration of validation, Al-powered explanation, user review, and automated correction
steps.

3.9 Workflow Optimization

To ensure responsiveness and usability, the entire pipeline is optimized for datasets containing
moderate rows and validation types per session. This optimization guarantees smooth performance,
quick feedback, and a streamlined experience suitable for both technical and non-technical users.

4. IMPLEMENTATION
The implementation phase involved the development of a full-stack web application integrating modern
backend and frontend technologies with Al-powered data validation and correction capabilities.

Backend Development: The backend was built using Python's FastAPI framework, chosen for its high
performance, asynchronous request handling, and automatic APl documentation generation. The
backend handles file uploads, data extraction, validation logic execution, and communication with the
OpenAl API for generating explanations and fix suggestions. MongoDB was used as the database to
store user sessions, uploaded files, validation results, and correction history.

Frontend Development: The user interface was developed using React and Material Ul to provide a
modern, responsive, and intuitive experience. The dashboard allows users to upload files via drag-and-
drop or file selection, view validation results in interactive tables, and apply corrections with a single
click. Real-time feedback and visual indicators enhance user engagement and transparency.

Data Validation Engine: The validation engine was implemented using Python's pandas library,
leveraging its powerful data manipulation and analysis capabilities. Ten distinct validation checks were
designed to detect missing values, duplicates, type mismatches, schema inconsistencies, and format
errors. Each check returns structured results that are aggregated for Al processing.

Al Integration: OpenAl's language models were integrated to generate natural language explanations
for detected exceptions and to suggest context-aware corrections. The system sends structured
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prompts containing validation results and receives human-readable explanations and actionable
recommendations. This integration enables non-technical users to understand and resolve data quality
issues without requiring programming knowledge.

File Processing: The system supports CSV, Excel, and JSON file formats. File parsing and data
extraction are handled using libraries such as pandas and openpyxl, ensuring compatibility and
robustness across different data structures. The export functionality preserves the original file format
and schema while incorporating user-approved corrections.

Security and Performance: Input validation, error handling, and secure file upload mechanisms were
implemented to ensure system reliability and data security. Asynchronous processing and optimized
data structures ensure responsive performance even with moderately large datasets.

5. RESULTS

The proposed data detection and correction system was evaluated across multiple datasets of varying
sizes and formats (CSV, Excel, and JSON) to assess its effectiveness, speed, and usability. Testing
focuses on metrics such as validation accuracy, correction rate, processing time, data integrity, and
scalability.

Validation Results

Detected data exceptions with explanattions and fix suggestions.

Row Column Exception Explanation Fix Suggestion
3 Quantity  Missing value This cell is empty, Fill with the average
which might indicate of the column
incomplete data.
Apply
7 Order Invaild date The value 2023/15/10' Change to
Date does not match the 2023-10-15"
expected date format
15 Price Out-of-range The value 5000.0 is Adjust to the
value unusually high maximum allowed
compared to typical value of 1000.0
prices.
20 Customer  Type mismatch  The value ‘ABC123'is  Convertto a
ID not an integer as numeric identifier

expected.

Apply

Figure 4: User Experience Results: Usability and Satisfaction Analysis

Figure 4 presents a sample dashboard view showing the validation results interface, where detected
exceptions are displayed with row-level details, Al-generated explanations, and smart fix suggestions.
Users can review and apply corrections interactively.
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5.1 Validation Accuracy

The system achieved a detection accuracy of 96.7% for common data quality issues, including
missing values, type mismatches, duplicates, and out-of-range values. Accuracy was measured by
comparing automatically detected exceptions against a manually verified ground-truth dataset. The
rule-based validation engine, supported by pandas operations, consistently flagged incorrect entries
while maintaining low false-positive rates.

5.2 Correction Rate

Automated correction capabilities were tested through Al-generated suggestions from the exception
handler module. Results showed that 82% of detected exceptions were correctly fixed through
automated smart suggestions, while 18% required user confirmation or manual correction. This
demonstrates strong system performance and efficiency in minimizing human intervention.

5.3 Processing Speed

Performance benchmarks indicated that exception detection and correction for moderate datasets
(<500 rows and 20 columns) completed within 3.8 seconds on average. For larger datasets (~2000
rows), the system maintained stable processing times under 10 seconds, confirming its capability for
real-time responsiveness in typical data-cleaning workflows.

5.4 User Experience

A usability study involving 10 participants (data analysts and non-technical users) showed a 95%
satisfaction rate. Participants appreciated the intuitive interface, minimal configuration steps, and clear
visualization of detected errors. The workflow — from file upload to result download — was rated as
simple and efficient, enabling users to clean data without specialized technical knowledge.

LIMITATIONS FUTURE WORK

» Datasetsize = ———3  Collaborative
constraints features

1

e Limited
validation types ——  Expanded data
format support
» Support limited l
to tabular
_ Improved Al
formats recommendations
Advanced

visualization tools

Figure 5. System Limitations and Corresponding Future Enhancements in the Data Exception
Explainer Framework
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Figure 5 illustrates user satisfaction metrics across different aspects of the system, including ease of
use, clarity of explanations, effectiveness of corrections, and overall experience. The chart
demonstrates high satisfaction rates across all categories.

5.5 Data Integrity

To ensure data preservation, multiple tests were conducted to verify that valid data remained unaltered
during the correction process. Structural validation confirmed that the system preserved the original
schema, column order, and file metadata. This guarantees that the corrected output remains compatible
with downstream analytical systems and pipelines.
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Figure 6: Advanced Visual Analytics Dashboard for Exception Trends and Data Quality Metrics

Figure 6 shows a before-and-after comparison of a sample dataset, highlighting detected issues in red
(before correction) and their resolved state (after correction). This visual confirmation demonstrates the
effectiveness and precision of the automated correction process.

5.6 Scalability and Reliability

The system was tested with datasets ranging from 100 to 5000 rows. Results confirmed that the
architecture, built on FastAPI and MongoDB, maintained consistent performance without degradation
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or data loss. The asynchronous request handling and efficient data serialization provided by the
backend contributed to reliable scalability.

5.7 Error Breakdown
An error frequency analysis revealed that missing values (45%) and type mismatches (30%) were the
most common exception types, followed by duplicate entries (15%) and format inconsistencies (10%).

et
N
[ |I Data
BI Tools Exception
F— | Explainer
ote > — '
® . .
S > Validation
ETL Pipelines & Correction
___
Cloud Storage
i
M
N Business Apps
) SEECI
Databases

Figure 7: External System Integration Architecture for the Data Exception Explainer

Figure 7 presents a bar chart visualization illustrating the distribution of exception types and their
successful resolution rates. The chart confirms that the system effectively handles a wide variety of data
quality issues.

5.8 Before and After Comparison

Qualitative results were demonstrated through sample file comparisons showing detected issues
highlighted in red (before correction) and their corrected versions (after correction). These examples
visually confirm the effectiveness of automated repair suggestions and help build transparency in the
correction process.

5.9 Limitations Observed During Testing

Despite strong results, the system showed minor limitations in handling complex nested JSON
structures and files with cross-referenced tables. These cases occasionally required additional
preprocessing or user clarification. Addressing such limitations forms a key focus for future system
improvements.

5.10 Summary Statistics

Overall, across all test datasets, the system detected a total of 2,300 exceptions, of which 1,886 were
automatically corrected, saving an estimated 68% of manual cleaning time. The findings confirm that
the system not only enhances data quality but also reduces human effort and turnaround time
significantly.
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6. CONCLUSION

This project successfully developed and deployed an Al-powered data exception detection and
correction system that automates the validation, explanation, and correction of data quality issues in
tabular datasets. The system integrates modern technologies including FastAPI, React, MongoDB, and
OpenAl's generative models to provide a seamless, user-friendly experience for both technical and non-
technical users.

The implementation demonstrated high validation accuracy, effective automated correction, responsive
processing speed, and strong user satisfaction. By providing natural language explanations and
context-aware fix suggestions, the system enhances transparency and trust in the data cleaning
process. The ability to handle multiple file formats and preserve data integrity ensures compatibility with
existing analytical workflows.

While the system performs exceptionally well for moderate-sized datasets, certain limitations related to
scalability, validation customization, and complex data structures have been identified. These areas
represent opportunities for future enhancement and expansion.

Overall, this work establishes a solid foundation for Al-driven, explainable, and efficient data quality
management, contributing to the growing body of research and practice in automated data validation
and intelligent exception handling.

7. ACKNOWLEDGMENT

The author extends sincere gratitude to the mentors, faculty advisors, and project collaborators for their
continuous guidance, technical insights, and valuable feedback throughout the development of this
work. Special appreciation is expressed to the Department of Computer Science at Sri Venkateswara
University for providing the necessary resources and support. The author also thanks the peers and
volunteers who actively participated in the user testing and evaluation phases, contributing to the
refinement and validation of the system.

8. LIMITATIONS
While the proposed system demonstrates effective and efficient performance for medium-sized
datasets, several limitations have been identified:

1. Dataset Size Constraint: The workflow is optimized for datasets containing up to 500 rows.
Processing larger or more complex files may result in slower performance and require further
backend optimization.

2. Limited Validation Types: The system supports up to ten validation checks per session, which
may not fully address enterprise-scale or domain-specific data cleaning requirements.

3. Predefined Validation Logic: The current version relies on generic, rule-based validation.
Highly specialized or custom domain rules must be implemented manually.

4. Al Model Dependence: The accuracy and contextual relevance of exception explanations and
smart fix suggestions depend on NLP model performance, which may occasionally produce
generalized or less precise recommendations for rare data issues.

5. Supported Data Formats: The system currently supports CSV, Excel, and JSON. Extending
compatibility to other formats such as XML, Parquet, or database exports will require additional
module integration.
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9. FUTURE WORK
The proposed system establishes a solid foundation for automated data validation and correction;
however, several extensions are planned to enhance scalability, flexibility, and user collaboration.

1.

Scalability Improvements: Future iterations will focus on extending the system architecture
to efficiently handle larger datasets containing thousands of rows and multiple concurrent users.
This can be achieved through distributed computing frameworks or cloud-based deployment
models to ensure high availability and performance.

Custom Validation Logic: The introduction of user-defined and domain-specific validation
rules will allow greater adaptability across industries. Users will be able to configure their own
exception detection logic, enabling the system to handle complex and specialized data
scenarios beyond the existing rule set.

Additional Data Formats: Expanding compatibility to include XML, Parquet, and database
exports will make the platform more versatile and suitable for modern data ecosystems. This
enhancement will enable seamless processing of heterogeneous data sources across
enterprise environments.

Collaborative Features: The next phase will incorporate real-time collaboration tools, version
control, and audit trails, enabling multiple users to collaboratively validate, clean, and monitor
shared datasets. These features will enhance transparency and teamwork in data quality
management.

Enhanced Al Recommendations: The smart fix module will be fine-tuned with user feedback
and contextual learning to produce more accurate and domain-aware correction suggestions.
Continuous model updates will improve the reliability and precision of Al-driven exception
explanations.

Visualization and Reporting: Advanced visual analytics and reporting modules will be
integrated to help users identify exception patterns, track data quality metrics, and visualize
improvements over time. This will make insights more actionable and easier to interpret.

Integration with External Systems: Planned developments include APIs and connectors for
direct integration with Business Intelligence (Bl) tools, ETL pipelines, and cloud storage
platforms, streamlining the end-to-end data lifecycle from ingestion to analytics.
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