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Abstract 

Industrial machinery failures remain a major source of operational inefficiency, unplanned 
downtime, and significant financial losses across manufacturing and Industry 4.0 
environments. This study presents an AI-driven predictive maintenance and failure 
forecasting system designed to proactively identify potential equipment failures using 
advanced machine learning techniques. The objective of the proposed framework is 
twofold: (1) to develop a high-performing classification model capable of accurately 
predicting machine failures, and (2) to integrate the model into an interactive real-time 
dashboard that supports intelligent monitoring, analysis, and visualization. The research 
utilizes the AI4I 2020 Predictive Maintenance Dataset, processed through a 
comprehensive Python-based analytical workflow incorporating Pandas, NumPy, Scikit-
learn, Matplotlib, and Seaborn. Extensive Exploratory Data Analysis (EDA), data 
preprocessing, and feature engineering were conducted to enhance data quality and 
strengthen model interpretability. New derived features—such as temperature differential 
and mechanical power—were engineered to capture latent operational patterns that 
directly influence machine degradation and failure behavior. To address the dataset’s 
inherent class imbalance, both the Synthetic Minority Over-Sampling Technique 
(SMOTE) and the class_weight='balanced' parameter were employed during model 
training. Multiple machine learning models were evaluated, including Logistic Regression, 
Support Vector Machines, and Gradient Boosting. Among these, the Random Forest 
classifier demonstrated superior predictive performance, strong generalization capability, 
and identified torque and rotational speed as the most influential predictors of equipment 
failure. The final system was deployed via a Streamlit-based web application, enabling 
end users to upload datasets, perform automated EDA, visualize data distributions, and 
generate real-time failure predictions. Users can also input new sensor measurements to 
obtain probabilistic failure estimates and review feature-importance explanations. Future 
enhancements include integrating real-time IoT sensor streams, migrating to cloud-native 
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deployment for scalability, and exploring deep learning architectures to further boost 
predictive accuracy. Overall, this work contributes a cost-effective, interpretable, and 
scalable predictive maintenance solution that supports data-driven decision-making and 
reduces unplanned operational downtime in industrial settings. 

Keywords— Predictive Maintenance, Industry 4.0, Machine Learning, Internet of Things 
(IoT), Random Forest, Data Imbalance, SMOTE, Feature Engineering. 

 

I. INTRODUCTION 

The rapid advancement of Industry 4.0 technologies has fundamentally transformed modern 

industrial operations, driven by the integration of the Internet of Things (IoT), real-time sensor 

networks, and intelligent automation systems. As manufacturing environments become 

increasingly digitized, the volume and complexity of sensor-generated data continue to grow 

exponentially. This surge in data availability has created new opportunities for applying machine 

learning methodologies to monitor equipment health, detect anomalies, and predict potential 

failures before they disrupt operations. Traditional maintenance strategies—such as reactive 

maintenance (repairing equipment after a failure occurs) and preventive maintenance (performing 

scheduled servicing regardless of machine condition)—are no longer sufficient in highly 

competitive, data-rich industrial settings. These approaches often result in unnecessary 

maintenance costs, inefficient resource utilization, and costly unplanned downtime. In contrast, 

Predictive Maintenance (PdM) leverages historical and real-time operational data to forecast 

failures in advance, enabling companies to deploy maintenance resources proactively. This 

transition from a time-based to a condition-based maintenance paradigm significantly enhances 

operational efficiency, reduces downtime, and promotes workplace safety. 

This project aims to develop a robust, data-driven predictive maintenance system using the AI4I 

2020 Predictive Maintenance Dataset, which includes critical sensor readings such as air 

temperature, process temperature, rotational speed, torque, and tool wear. The core objective is 

to accurately classify machine failure events using a structured machine learning pipeline 

involving comprehensive preprocessing, advanced feature engineering, and model evaluation. 

Derived features, such as temperature differential and mechanical power, were engineered to 

capture deeper operational relationships and improve predictive performance. Several machine 

learning algorithms were evaluated, with the Random Forest Classifier emerging as the most 

effective model due to its strong generalization capability, robustness to noise, and ability to 

handle nonlinear relationships. Class imbalance—common in failure datasets—was mitigated 

using the Synthetic Minority Over-sampling Technique (SMOTE) and class_weight = 'balanced', 

ensuring improved sensitivity toward minority failure cases. 

The final deliverable of this project is an interactive Streamlit web application that allows users to 

upload datasets, perform automated Exploratory Data Analysis (EDA), visualize patterns, and 

generate real-time failure predictions. Additionally, model interpretability is supported through 
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feature importance plots, enabling users to understand the factors contributing most strongly to 

failure predictions. Although the model achieves strong performance on the AI4I dataset, its 

generalizability may be limited by dataset-specific characteristics and the assumption of clean, 

structured input data. Future work will explore integration with real-time IoT streams, cloud-based 

deployment for scalable industrial usage, and deep learning architectures to improve adaptability 

across diverse industrial environments. 

II. LITERATURE REVIEW 

This paper provides a comprehensive examination of existing research on industrial maintenance 

strategies, predictive methodologies, and supporting software ecosystems. The review begins by 

tracing the historical evolution of maintenance paradigms—from reactive approaches to 

advanced predictive systems—highlighting their strengths, limitations, and relevance in modern 

Industry 4.0 environments. 

Historically, Reactive Maintenance (RM), or “run-to-failure,” was the dominant strategy. Although 

simple to implement, RM often leads to prolonged downtime, high repair costs, and safety risks 

due to unexpected failures. To reduce uncertainty, industries shifted to Preventive Maintenance 

(PM), where servicing is performed according to fixed schedules. However, PM frequently results 

in unnecessary maintenance of components that are still in optimal condition, leading to 

inefficiencies and wastage of resources. 

The emergence of IoT-enabled sensor systems facilitated Condition-Based Maintenance (CBM), 

which monitors real-time physical parameters—such as temperature, vibration, and pressure—to 

trigger maintenance based on actual equipment condition. Despite this improvement, CBM 

focuses on short-term anomaly detection and does not provide long-range predictions or 

estimates of remaining useful life (RUL). 

Predictive Maintenance (PdM) represents the most advanced stage of this evolution. PdM 

integrates high-frequency sensor data with machine learning algorithms to forecast equipment 

failures in advance. Classical machine learning techniques—including Logistic Regression, 

Support Vector Machines (SVM), Decision Trees, Random Forest, and Gradient Boosting—have 

demonstrated strong performance in analyzing multivariate industrial datasets. In recent years, 

deep learning approaches, especially Convolutional Neural Networks (CNNs) for feature 

extraction and Long Short-Term Memory (LSTM) networks for time-series modelling, have been 

widely adopted to enhance predictive accuracy in complex industrial environments. 

Commercial PdM platforms such as IBM Maximo, GE Predix, and Siemens MindSphere offer 

enterprise-scale predictive intelligence, but their high implementation costs and steep learning 

curves limit adoption among small and medium enterprises (SMEs). Popular data visualization 

tools such as Power BI and Tableau are effective for analytics but lack integrated machine 

learning pipelines and real-time predictive capabilities. Moreover, much of the academic research 

in PdM remains confined to prototype notebooks, offering limited deployment-readiness and 

minimal user interaction. 

A clear research gap exists in developing cost-effective, interpretable, user-friendly, and fully 

deployable PdM systems that can be utilized by maintenance engineers without specialized data 
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science expertise. This project addresses this gap by designing a lightweight predictive 

maintenance framework built using Python, Scikit-learn, and Streamlit, enabling real-time 

analysis, visualization, and prediction in an accessible web-based interface. The proposed 

solution acts as a bridge between domain experts and data-driven analytics, supporting practical 

adoption of Industry 4.0 methodologies across diverse industrial settings. 

III. SYSTEM ANALYSIS AND DESIGN 

This chapter presents a detailed analysis of the predictive maintenance system, linking theoretical 

foundations with practical implementation. The analysis covers requirements specification, 

feasibility evaluation, system environment, and architectural design to ensure the solution is both 

functional and deployable. 

A. Requirements Specification 

The system must support key functional requirements, including: 

• Data ingestion from user-uploaded CSV files 

• Automated data cleaning and preprocessing 

• Feature engineering (e.g., temperature differential, mechanical power) 

• Exploratory Data Analysis (EDA) through visualizations 

• Model training and evaluation using a Random Forest Classifier 

• Real-time failure predictions via a Streamlit dashboard 

• Feature importance visualization for interpretability 

Non-functional requirements emphasize: 

• Usability: Interface designed for non-technical users 

• Performance: Fast execution through caching and efficient model inference 

• Reliability: Robust handling of diverse datasets 

• Maintainability: Modular structure for easy extension 

B. Feasibility Study 

A feasibility assessment confirms that the system is viable across technical, economic, and 

operational dimensions: 

• Technical Feasibility: 

Developed using open-source Python libraries (Pandas, NumPy, Scikit-learn, Streamlit), 

the system requires no proprietary software or advanced hardware. 

• Economic Feasibility: 

Zero licensing costs and minimal infrastructure requirements make the solution suitable 

for SMEs and academic environments. 

• Operational Feasibility: 
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The interface aligns with the workflows of maintenance engineers and plant supervisors. 

No specialized training is required, making system adoption easy and practical. 

C. System Environment 

The system is platform-independent and runs on: 

• Hardware: Dual-core CPU, 4–8 GB RAM 

• Operating Systems: Windows, macOS, Linux 

• Software Stack: Python 3.x, Scikit-learn, Streamlit, Matplotlib, Seaborn 

This lightweight environment ensures broad accessibility and ease of deployment. 

D. System Architecture 

The architectural design defines how users interact with the system and how internal components 

communicate. The framework supports: 

• Dataset Upload: Users upload custom CSV files. 

• Automated Processing: The system performs cleaning, preprocessing, and feature 

engineering. 

• EDA Module: Visual summaries are displayed via Streamlit. 

• Model Training: The Random Forest model is trained on processed data. 

• Prediction Engine: Real-time predictions are generated based on new sensor inputs. 

• Modular Workflow: Each step is implemented as an independent module, ensuring 

traceability and maintainability. 

Overall, the system architecture enables a streamlined, end-to-end predictive maintenance 

solution that is scalable, interpretable, and user-friendly—aligning with Industry 4.0 expectations. 

IV. SYSTEM ARCHITECTURE AND DESIGN 

The proposed Predictive Maintenance System is organized into a three-layer architectural 

framework to ensure modularity, scalability, and ease of maintenance. Each layer performs 

specialized tasks and collectively supports the end-to-end workflow of data ingestion, processing, 

model generation, and predictive analysis. 

A. Data Layer 

The Data Layer is responsible for collecting, storing, and preparing the input dataset. The system 

utilizes the AI4I 2020 Predictive Maintenance Dataset, which includes key operational 

parameters such as: 

• Air temperature 

• Process temperature 

• Rotational speed 

• Torque 
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• Tool wear 

To enhance predictive capability, additional engineered features are computed, including: 

• Temperature Difference (∆T): Process temperature − air temperature 

• Mechanical Power: Product of torque and rotational speed 

These engineered variables strengthen the model’s ability to capture deeper operational 

relationships and hidden degradation patterns. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Processing Layer 

The Processing Layer handles all computational and analytical tasks, including: 

1. Data Preprocessing 

o Removal of missing and inconsistent values 

o Standardization and normalization 

o Encoding of categorical variables 

2. Feature Engineering 

o Computation of derived features 

o Detection of outliers and abnormal readings 

3. Class Imbalance Handling 

o Application of SMOTE (Synthetic Minority Over-sampling Technique) 

o Use of class_weight = 'balanced' within the model to improve sensitivity toward 

rare failure instances 

4. Model Development and Selection 
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Multiple machine learning algorithms were evaluated, including: 

o Logistic Regression 

o Decision Tree 

o K-Nearest Neighbors 

o Random Forest 

The Random Forest Classifier was ultimately selected for deployment due to its superior 

predictive accuracy, robustness, and interpretability. 

C. Application Layer 

The Application Layer consists of a Streamlit-based user interface, which serves as the primary 

interaction point for end users. Core capabilities include: 

• Dataset upload and preview 

• Automated Exploratory Data Analysis (EDA) 

• Viewing of model performance metrics 

• Real-time failure prediction 

• Visualization of feature importance 

This interactive dashboard bridges technical machine learning outputs with intuitive visualizations, 

enabling maintenance engineers to make informed decisions without requiring data science 

expertise. 

D. System Design Considerations 

Several design choices were made to enhance efficiency, maintainability, and usability: 

• Caching mechanisms (via @st.cache_data) reduce latency during repeated operations. 

• Modular function design improves readability and simplifies future maintenance. 

• Clear UI affordances lower the barrier for non-technical stakeholders, promoting wider 

adoption. 

• Although current operations use in-memory data structures suitable for small to mid-size 

datasets, the architecture can be easily extended to incorporate persistent storage, 

serialized models, and cloud deployment for production-level scalability. 

E. Modeling and Structural View 

The system’s logical and structural components are represented through: 

• Data Flow Diagrams (DFDs): Illustrating the entire workflow from dataset upload through 

cleaning, transformation, training, and prediction. 

• Entity–Relationship (ER) Models: Defining entities such as Machines, SensorReadings, 

and Predictions, and their associated relationships. 
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• Class Diagrams: Representing core modules including: 

o DataHandler 

o FeatureEngineer 

o ModelTrainer 

o DashboardUI 

These modules interact sequentially to facilitate a smooth data-to-decision pipeline. 

The proposed relational schema sets the stage for eventual integration with real-time industrial 

IoT databases, while the Streamlit dashboard ensures accessibility within an Industry 4.0 context. 

V. IMPLEMENTATION 

This chapter outlines the tools, technologies, and modular approach used to implement the 

predictive maintenance system. The solution leverages a lightweight, cost-effective, open-

source Python ecosystem to deliver a functional prototype suitable for academic and small-

scale industrial evaluation. 

A. Tools and Technologies 

The system is developed using the following core libraries: 

• Pandas & NumPy: Data ingestion, preprocessing, and feature engineering 

• Scikit-learn: Machine learning model development 

• Imbalanced-learn (SMOTE): Addressing class imbalance 

• Matplotlib & Seaborn: Exploratory data visualization 

• Streamlit: Application layer and dashboard interface 

B. Backend Core Module 

The backend module is responsible for: 

• Data ingestion (CSV upload) 

• Automated cleaning and transformation 

• Engineering derived variables (e.g., temperature difference, mechanical power) 

• Splitting data into training and testing sets 

• Applying SMOTE for class balancing 

• Training a Random Forest model using: 

class_weight = 'balanced' 

This ensures that rare failure events receive higher weight during training. 

The trained model is maintained in-memory to support immediate predictions without requiring 

repeated retraining. 



 

International Journal of Global Engineering (IJGE) 

ISSN : 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 62 - 76 

RECEIVED : 05.11.2025 PUBLISHED : 24.11.2025 

 

 

 Pamudurthi Sowjanya, Padmavathamma M 70 

 

C. Frontend Interaction Module 

The Streamlit-based frontend implements: 

• Dynamic dashboard layout 

• Automated EDA charts (heatmaps, histograms, correlation matrices) 

• Model performance displays (accuracy, confusion matrix) 

• Real-time prediction interface where users input sensor values 

• Feature-importance graphs for interpretability 

This allows users to conduct “what-if” analyses and instantly evaluate how changing sensor 

inputs affects failure likelihood. 

D. File Structure 

File responsibilities include: 

• app.py — orchestrates the full system workflow including data upload, preprocessing, 

training, prediction, and UI rendering 

• ai4i2020.csv — serves as the ground-truth dataset for training and evaluation 

• Additional Jupyter notebooks support offline EDA, feature engineering experiments, and 

model benchmarking 

VI. TESTING 

Testing is a critical phase within the Software Development Life Cycle (SDLC), ensuring that the 

Predictive Maintenance System functions accurately, reliably, and efficiently. Given the system’s 

workflow—integrating data preprocessing, machine learning, and an interactive Streamlit 

dashboard—the testing process evaluates functional correctness, prediction accuracy, 

visualization integrity, and overall user experience. 

A. Testing Methodology 

A multi-tier testing methodology was adopted, encompassing: 

1) Unit Testing 

Unit tests were designed to validate the correctness of individual functions, including: 

• load_data() for accurate ingestion of CSV files 

• Feature engineering computations such as: 

Example test: 

Air Temperature = 298 K, Process Temperature = 308 K 

→ Temperature Difference = 10 K (correct output) 

These tests ensured mathematical correctness and consistent preprocessing behavior. 

2) Integration Testing 

Integration testing validated the interaction of various modules: 

• Dataset upload 
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• Automated preprocessing 

• SMOTE balancing 

• Model training 

• Prediction generation 

The system successfully performed the complete workflow without errors, confirming 

interoperability of all components. 

3) System Testing 

System-level testing involved validating the entire dashboard in a browser environment. The 

following were confirmed: 

• Responsiveness of UI elements 

• Accuracy of visualizations (heatmaps, histograms, correlation matrices) 

• Smooth execution of the end-to-end pipeline 

• Correct rendering of prediction outputs 

4) User Acceptance Testing (UAT) 

UAT was conducted with maintenance engineers and engineering students. Feedback confirmed: 

• Highly intuitive dashboard navigation 

• Clear interpretability of visualizations 

• Desire for future enhancements such as IoT integration and cloud hosting 

B. Test Case Summary 

The following categories were tested: 

Test Scenario Outcome 

Valid CSV file upload Pass 

Corrupted/incorrect file upload Handled with user-friendly error messages 

Unseen data values Model generalized successfully 

Prediction consistency RF maintained > 85% predictive accuracy 

Visualization rendering Verified for correctness and readability 

Tools utilized included pytest, unittest, Streamlit debug logs, Seaborn, and Matplotlib. 

C. Overall Testing Outcome 

The testing phase confirmed that the Predictive Maintenance System is: 

• Accurate in predicting machine failures 

• Reliable in handling diverse input scenarios 



 

International Journal of Global Engineering (IJGE) 

ISSN : 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 62 - 76 

RECEIVED : 05.11.2025 PUBLISHED : 24.11.2025 

 

 

 Pamudurthi Sowjanya, Padmavathamma M 72 

 

• User-friendly and intuitive 

• Ready for real-world deployment 

Future enhancements include automated UI testing using Selenium, REST API validation using 

Postman, and load testing once cloud deployment is implemented. 

VII. RESULTS AND DISCUSSION 

This chapter presents the system outcomes, performance statistics, and key insights derived from 

the deployed Predictive Maintenance Dashboard. 

A. Dashboard Outcomes 

Upon uploading the AI4I 2020 dataset, users are provided with: 

• A clean data preview 

• Automatically generated engineered features 

• EDA visualizations including: 

o Feature distributions 

o Failure ratios 

o Correlation heatmaps 

These visualizations help maintenance personnel understand underlying patterns and operational 

anomalies. 
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B. Model Performance 

The Random Forest Classifier demonstrated excellent performance, achieving: 

• Accuracy: >99% 

• High recall for failure detection (critical for industrial environments) 

The confusion matrix confirmed minimal false negatives, reducing the likelihood of missed failure 

predictions. 

Feature importance analysis identified: 

1. Torque 

2. Rotational Speed 

3. Mechanical Power 

4. Temperature Differential 

These findings align with mechanical engineering principles and validate the model’s physical 

relevance. 

C. Interactive Prediction Panel 

The prediction interface allows the user to input new sensor readings. The system responds with: 

• Color-coded output (green = normal; red = failure likely) 

• Probability scores 

• Contextual feature explanations 

This enhances transparency and confidence in the model’s predictions. 

D. Comparative Analysis 

Compared to traditional maintenance systems and commercial PdM platforms (Siemens 

MindSphere, GE Predix), the proposed solution offers: 

• Cost-free deployment 

• High interpretability 

• Open-source adaptability 

• Suitability for SMEs and academic prototyping 

The system delivers a practical and accessible alternative to expensive enterprise solutions. 

E. Conclusion of Evaluation 

Overall, the Predictive Maintenance System demonstrates: 

• Strong predictive capability 

• High interpretability 

• Smooth usability 
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• Practical relevance in Industry 4.0 environments 

VIII. CONCLUSION AND FUTURE WORK 

This project successfully developed an AI-driven Predictive Maintenance System capable of 

forecasting machine failures using the AI4I 2020 dataset. The solution integrates data ingestion, 

automated preprocessing, feature engineering, machine learning, model evaluation, and a fully 

interactive Streamlit dashboard. 

Key accomplishments include: 

• Creation of engineered features (temperature difference, mechanical power) enhancing 

interpretability 

• Evaluation of multiple algorithms, with Random Forest achieving superior performance 

• Mitigation of class imbalance via SMOTE and balanced class weighting 

• Deployment of an intuitive predictive dashboard suitable for industrial users 

A. Limitations 

Despite strong performance, the system exhibits the following limitations: 

• Dependent on a static CSV dataset 

• Lacks real-time IoT sensor integration 

• Operates locally without cloud scalability 

• Predicts only binary failure/no-failure events 

• Limited handling of very large datasets 

B. Future Enhancements 

Planned extensions include: 

1. IoT Data Pipeline Integration 

Using MQTT, Kafka, or OPC-UA for real-time sensor streaming. 

2. Cloud Deployment 

Hosting on AWS/Azure/GCP with CI/CD and MLOps pipelines. 

3. Advanced Modeling 

Incorporating XGBoost, LightGBM, or deep learning architectures (LSTM, CNN). 

4. Failure-Type Classification 

Predicting which component is failing, not just whether failure will occur. 

5. Automated Model Retraining 

Supporting incremental learning as new data arrives. 

6. Enhanced User Interface 
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o Multilingual support 

o Automated PDF report generation 

o Role-based access control 

These improvements will transform the system from a prototype into a fully scalable enterprise-

grade solution aligned with Industry 4.0 standards. 
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