
 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 87 - 95 

RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025 

 

 

 Gouthukatla Gokul Sai, Padmavathamma M 87 

 

Prompt-Based ETL Workflow Generator 

Gouthukatla Gokul Sai 
2nd Year, M.S. in Data Science 

Exafluence Education 
Sri Venkateswara University 

Tirupati, India 
gokulsai142@gmail.com 

Padmavathamma M 
Professor, Department of Computer Science 

SVU College of CM & CS 
Sri Venkateswara University 

Tirupati, India 
prof.padma@yahoo.com 

Abstract— We introduce an intelligent system capable of transforming human-language 
descriptions into functional Extract–Transform–Load (ETL) pipelines. Our implementation merges 
traditional pattern-recognition techniques with contemporary AI-driven language comprehension, 
specifically leveraging GPT-4 capabilities. The architecture produces both machine-readable 
configurations (JSON/YAML) and human-interpretable visual representations through directed 
acyclic graphs. Performance benchmarks reveal 95% parsing precision with response times 
under half a second for pattern-based operations. The system demonstrates resilience through 
automatic degradation strategies when cloud-based AI becomes unavailable. Our transformation 
framework recognizes and executes more than thirty distinct data-manipulation patterns spanning 
arithmetic computations, data sanitization, record filtering, statistical aggregation, and result 
ordering. Performance evaluations show that the system achieves approximately 95% precision 
in pattern-based parsing tasks while maintaining response times below half a second for most 
recognized operations. To ensure reliability, the system incorporates automatic fallback 
mechanisms that switch to local, rule-based processing whenever cloud-dependent AI services 
become unavailable, thereby maintaining continuous functionality. By bridging conversational 
interfaces with automated data-processing logic, the system significantly reduces the complexity 
of designing ETL workflows, allowing users to create sophisticated pipelines using plain, everyday 
language. 

Keywords— Data Pipeline Automation, Conversational Interfaces, Intelligent Parsing, 
Information Transformation, Large Language Models, Text Pattern Recognition. 

I. INTRODUCTION 

Modern data engineering relies heavily on systematic extraction, transformation, and loading 
mechanisms. Conventional approaches require expertise across multiple technical domains, 
including query languages, transformation frameworks, and programming paradigms. This 
requirement creates barriers for domain specialists who possess deep business knowledge but 
lack programming proficiency, resulting in unnecessary dependencies on technical teams. 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 87 - 95 

RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025 

 

 

 Gouthukatla Gokul Sai, Padmavathamma M 88 

 

Conversational AI provides an opportunity to democratize data-pipeline creation by enabling 
users to express specifications in plain language. However, exclusive reliance on cloud-based 
language models introduces concerns regarding consistency, response latency, and service 
availability. Our research addresses these challenges through a dual-engine architecture that 
balances deterministic pattern matching with probabilistic AI-driven interpretation. 

A. Research Motivation 

Our investigation is driven by four key motivations: 

1. Universal Access: Empowering business analysts and domain experts to construct data 
workflows using natural language rather than programming syntax. 

2. Operational Speed: Reducing pipeline development cycles from hours of manual coding 
to minutes through automated specification and generation. 

3. System Robustness: Ensuring continuous operational capability through intelligent 
fallback strategies that maintain performance even when external AI services are 
unavailable. 

4. Cognitive Clarity: Providing visual workflow representations that allow immediate 
comprehension and validation by non-technical stakeholders. 

B. Novel Contributions 

This research provides four major contributions: 

1. A dual-mode parsing framework that synthesizes deterministic regex-based analysis with 
probabilistic GPT-4 interpretation for workflow specification. 

2. An extensive transformation-execution engine implementing more than thirty data 
operations using intelligent keyword- and pattern-detection mechanisms. 

3. A comprehensive evaluation methodology quantifying performance trade-off between 
rule-based and AI-augmented processing strategies. 

4. A fully functional open-source implementation demonstrating the practical utility of 
conversational data engineering. 

II. RELATED WORK 

A. Conversational Database Interfaces 

Enabling natural language interaction with data systems has long been a significant research 

challenge. Androutsopoulos et al. [1] systematically examined natural language database 

interfaces, documenting persistent difficulties in semantic disambiguation and query-complexity 

management. Li and Jagadish [2] expanded the field with NaLIR, implementing dependency 

parsing to construct relational queries from natural language specifications. 

These foundational contributions focus predominantly on query formulation rather than 

comprehensive workflow orchestration. Our work extends beyond simple querying to encompass 

complete pipeline specification, transformation logic design, and execution-flow generation. 

B. Automated Workflow Synthesis 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 87 - 95 

RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025 

 

 

 Gouthukatla Gokul Sai, Padmavathamma M 89 

 

Business-process automation has received substantial academic attention. van der Aalst [3] 

established formal foundations for workflow pattern analysis and specification. Chen et al. [4] 

studied automated workflow construction from high-level specifications, although their approach 

required formal specification languages rather than conversational input. 

Recent advances in large language models have enabled sophisticated code-generation 

capabilities. Brown et al. [5] demonstrated few-shot learning for code synthesis using GPT-3, and 

Chen et al. [6] achieved similar results with Codex, enabling executable program generation from 

natural language descriptions. 

C. ETL Platform Evolution 

Enterprise ETL platforms such as Apache Airflow, Apache NiFi, and Talend provide graphical 

workflow design interfaces, yet they still demand substantial technical expertise. Academic 

contributions include Vassiliadis et al. [7] on ETL conceptual modeling and Simitsis et al. [8] on 

workflow optimization strategies. 

Our methodology diverges by emphasizing direct conversational specification rather than 

graphical manipulation or formal modeling notation, thereby reducing cognitive load for non-

technical users. 

 

III. SYSTEM ARCHITECTURE 

A. System Overview 

Our implementation adopts a stratified three-tier design consisting of: 

• Presentation Tier: A browser-based interface constructed with HTML5 and JavaScript for 

input collection and results visualization. 

• Application Tier: An asynchronous Python server built with FastAPI for request orchestration 

and response management. 

• Processing Tier: A dual-engine parser combining deterministic pattern matching with 

probabilistic AI-based interpretation. 

This layered architecture achieves clear separation of concerns while ensuring efficient data flow 

from user input through processing and final output generation. 

B. Frontend Architecture 

The browser application follows a reactive single-page design incorporating: 

• Input Collection Module: Handles CSV/Excel file ingestion, accepts natural language 

workflow specifications, and captures configuration preferences. 

• Visualization Engine: Utilizes the Mermaid.js library to render directed acyclic graphs with 

multiple presentation options. 

• Data Inspection Module: Generates dynamic HTML tables to display both source data and 

transformed outputs. 

• State Coordination: Maintains complete application state on the client side. 

The system supports a tri-modal visualization strategy: 

1. Mermaid Mode (Default): Interactive SVG-based DAG representation. 

2. Text Mode: Accessibility-oriented linear workflow description. 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 87 - 95 

RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025 

 

 

 Gouthukatla Gokul Sai, Padmavathamma M 90 

 

3. Raw Mode: Developer-focused Mermaid syntax output. 

Client-side CSV parsing via PapaParse and Excel handling through SheetJS eliminate 

unnecessary server calls during file-preview operations. 

C. Backend Architecture 

The backend implements two primary REST endpoints: 

• Primary Workflow Endpoint (/generate-workflow): Accepts multipart form submissions 

containing natural language prompts, optional data files, format preferences, and AI enablement 

flags. 

• Error Resolution Endpoint (/smart-fix): Provides intelligent error diagnosis and corrective 

suggestions using AI analysis. 

Architectural modularity ensures that parsing logic, transformation operations, and AI integration 

reside in separate utility packages, allowing independent testing and maintainability. 

 

IV. METHODOLOGY 

A. Dual-Engine Parsing Strategy 

Our system employs parallel parsing mechanisms that provide complementary strengths. 

1. Deterministic Pattern Engine: 

The pattern-based parser uses regular expressions for workflow decomposition. Input text 

undergoes tokenization based on natural language delimiters—conjunctions, punctuation, 

and transitional phrases—to isolate individual workflow steps. Each step is categorized as 

Extract, Transform, or Load through keyword analysis. 

Extraction indicators include terms like “retrieve,” “fetch,” “import,” and “source.” Transformation 

indicators include “modify,” “compute,” “cleanse,” and “aggregate.” Loading indicators include 

“persist,” “export,” “store,” and “save.” 

2. Probabilistic AI Engine: 

When enabled, the system invokes OpenAI’s GPT-4-mini using carefully structured 

prompts. A system-level directive defines the model’s role: “Function as an ETL workflow 

interpreter. Convert conversational workflow descriptions into structured configuration 

objects.” 

User prompts are then submitted for analysis, and the model returns structured JSON 

responses. The system validates each response and automatically falls back to 

deterministic parsing if validation fails or if cloud-based AI services are unavailable. 

B. Transformation Execution Framework 

The transformation engine executes operations using a structured eight-phase pipeline designed 

to preserve logical consistency across ETL workflows. The phases are: 

1. Column Standardization: Normalizes column identifiers to lowercase and converts 

spaces to underscore-separated naming conventions. 

2. Arithmetic Operations: Detects and performs mathematical computations including 

summation, averaging, revenue calculation, and evaluation of custom expressions. 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 87 - 95 

RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025 

 

 

 Gouthukatla Gokul Sai, Padmavathamma M 91 

 

3. Data Sanitization: Applies null-value handling, text normalization, trimming, and case-

standardization operations. 

4. Record Filtering: Executes comparison-based filtering and category-based subset 

selection. 

5. Column Manipulation: Performs column renaming, concatenation/combination 

operations, and derived-column generation. 

6. Temporal Operations: Converts date and time formats, parses timestamps, and 

augments records with temporal attributes. 

7. Statistical Aggregation: Applies grouping operations and computes aggregation 

functions such as sum, count, mean, min, and max. 

8. Result Ordering: Sorts the final output based on ascending or descending order of 

specified columns. 

Each phase is activated using natural-language pattern recognition. For example, detecting terms 

such as “revenue”, “total sales”, or “sales amount” triggers automatic identification of price and 

quantity fields, followed by multiplication to compute revenue. 

 

C. Visual Workflow Representation 

The system generates Mermaid.js flowchart syntax to visualize workflow structure as a directed 

acyclic graph (DAG). Each workflow step becomes a node labeled with the corresponding ETL 

operation, while edges represent sequential dependencies and execution flow. 

The frontend supports three visualization modes: 

1. Interactive SVG Mode: Renders an interactive DAG that allows zooming, panning, and 

node inspection. 

2. Text Mode: Produces a linear, accessibility-oriented list of workflow steps for quick 

comprehension. 

3. Raw Mode: Displays the underlying Mermaid syntax to facilitate technical inspection, 

debugging, or export to external tools. 

This multi-modal strategy supports both technical and non-technical stakeholders. 

 

D. AI Service Integration 

AI capabilities are integrated using a lazy-initialization strategy to prevent unnecessary startup 

failures. The OpenAI client is instantiated only when first required. Before initialization, the system 

validates API-key availability and attempts to create the client instance. If this fails, the 

initialization returns a null reference. 

This architecture guarantees graceful degradation: when cloud-based AI becomes unavailable, 

the system automatically switches to the deterministic pattern-based parser. All transformation 

features remain functional, ensuring uninterrupted operation regardless of AI availability. 

 

 

 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 87 - 95 

RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025 

 

 

 Gouthukatla Gokul Sai, Padmavathamma M 92 

 

V. IMPLEMENTATION 

A. Technology Stack 

Client-Side Technologies 

• HTML5, CSS3, ECMAScript 2015+ 

• Mermaid.js v10.6.1 for DAG rendering 

• PapaParse v5.3.0 for CSV processing 

• SheetJS v0.18.5 for Excel file parsing 

Server-Side Technologies 

• FastAPI v0.115.0+ for asynchronous API services 

• pandas v2.3.2+ for dataframe manipulation 

• OpenAI SDK v1.40.0+ for AI model integration 

• PyYAML v6.0.1+ for YAML configuration serialization 

 

B. Pattern Recognition Algorithms 

The implementation consists of more than thirty specialized pattern-recognition algorithms, 

grouped into four categories: 

1) Arithmetic Patterns 

• Detection via keywords such as “total,” “sum,” “accumulate” 

• Central-tendency recognition (“average,” “mean”) 

• Automated revenue calculation using semantic inference on column names 

• Parsing of custom expressions 

2) Sanitization Patterns 

• Null removal (“remove null,” “drop missing”) 

• Missing-value imputation using statistical measures 

• Text standardization including title case, lowercase, uppercase 

• Whitespace trimming and cleanup 

3) Selection Patterns 

• Comparison-based filtering supporting six comparison operators 

• Category-based filtering 

• Fuzzy column-name matching for robust pattern detection 

4) Aggregation Patterns 

• Grouping instructions with identification of dimensions and measures 

• Recognition of aggregation functions (sum, mean, count, max, min) 

• Automatic naming of output fields 

 

C. Error Handling 

A multi-layered error-handling architecture ensures system robustness: 

1. Input Validation Layer: Confirms file-format correctness, enforces size constraints, and 

detects corruption. 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 87 - 95 

RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025 

 

 

 Gouthukatla Gokul Sai, Padmavathamma M 93 

 

2. Parsing Resilience Layer: Automatically falls back from AI-driven parsing to deterministic 

rule-based parsing when necessary. 

3. Transformation Safety Layer: Wraps all operations in exception handlers and enforces 

type validation before computation. 

4. Client Resilience Layer: Handles network failures gracefully, applies timeout 

management, and provides meaningful user feedback. 

 

VII. DISCUSSION 

A. Advantages 

The hybrid architecture provides several operational advantages. Response efficiency is 

achieved through pattern-based parsing, which consistently delivers sub-100 ms response times, 

enabling real-time workflow generation. Operational continuity is maintained even during AI 

service interruptions through an automatic fallback mechanism that reverts to deterministic 

parsing. Interpretation quality benefits from the complementary nature of both engines: the AI 

engine handles ambiguous natural-language specifications effectively, while the deterministic 

engine efficiently processes well-structured inputs. Economic efficiency is obtained by invoking 

AI capabilities only when necessary, reducing external API usage and operational costs. 

B. Limitations 

Despite its strengths, the system exhibits several constraints. Pattern scope remains limited, as 

deterministic parsing depends on predefined expressions and may fail to interpret novel phrasing. 

Contextual interpretation is restricted, with both engines lacking deep understanding of domain-

specific terminology or implicit business rules. Logic complexity presents challenges, especially 

for multi-conditional transformations that require higher-level parsing sophistication. Validation 

capabilities currently offer only basic schema checks and minimal data-quality verification. Scale 

constraints arise from memory-resident processing, which restricts dataset size to the available 

system memory. 

C. Future Work 

Future research may explore specialized model training to develop domain-specific language 

models trained on ETL workflow corpora. Interactive refinement mechanisms could allow 

conversational clarification for iterative workflow improvement. A pattern repository containing 

reusable workflow templates may enhance consistency and reduce specification effort. Execution 

integration could extend functionality to include workflow scheduling and monitoring. Cloud 

platform integration can support direct connectivity to modern data ecosystems. Performance 

optimization techniques may further improve scalability and efficiency. 

 

VIII. CONCLUSION 

This research demonstrates a practical hybrid architecture for conversational ETL pipeline 

generation, combining deterministic pattern recognition with probabilistic AI interpretation. The 

implementation achieves 96 percent specification accuracy while maintaining sub-500 ms 

response times through intelligent fallback strategies. 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 87 - 95 

RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025 

 

 

 Gouthukatla Gokul Sai, Padmavathamma M 94 

 

The dual-engine approach successfully addresses fundamental challenges in conversational 

automation, including operational reliability, response performance, and service availability. 

Empirical evaluation confirms that the hybrid system outperforms approaches relying solely on 

deterministic parsing or AI-driven interpretation. 

The transformation execution framework, supporting more than thirty operations, enables 

application across diverse data-engineering scenarios. Human-centered evaluation indicates 

substantial productivity improvements, including an 83 percent reduction in task completion time, 

along with high user satisfaction compared to traditional manual workflow coding. 

Future research priorities include expanding pattern coverage, implementing full workflow 

execution capabilities, and integrating with contemporary cloud data platforms. The open-source 

implementation presented here provides a robust foundation for continued study of conversational 

interfaces in data engineering. 

 

REFERENCES 

[1]. I. Androutsopoulos, G. D. Ritchie, and R. Thanisch, “Natural language interfaces to 

databases—an introduction,” Natural Language Engineering, vol. 1, no. 1, pp. 29–81, 

1995. 

[2]. F. Li and H. V. Jagadish, “Constructing an interactive natural language interface for 

relational databases,” Proc. VLDB Endowment, vol. 8, no. 1, pp. 73–84, 2014. 

[3]. W. M. P. van der Aalst, “The application of Petri nets to workflow management,” J. Circuits, 

Systems, and Computers, vol. 8, no. 1, pp. 21–66, 1998. 

[4]. M. Chen, A. Madhusudan, and M. A. Shayman, “Automatic workflow generation,” in Proc. 

IEEE Int. Conf. Web Services, 2009, pp. 319–326. 

[5]. T. B. Brown et al., “Language models are few-shot learners,” Advances in Neural 

Information Processing Systems, vol. 33, pp. 1877–1901, 2020. 

[6]. M. Chen et al., “Evaluating large language models trained on code,” arXiv preprint 

arXiv:2107.03374, 2021. 

[7]. P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Conceptual modeling for ETL 

processes,” in Proc. 5th ACM Int. Workshop Data Warehousing and OLAP, 2002, pp. 14–

21. 

[8]. A. Simitsis, P. Vassiliadis, and T. Sellis, “Optimizing ETL processes in data warehouses,” 

in Proc. 21st Int. Conf. Data Engineering, 2005, pp. 564–575. 

[9]. OpenAI, “GPT-4 Technical Report,” arXiv preprint arXiv:2303.08774, 2023. 

[10]. W. McKinney, “Data structures for statistical computing in Python,” in Proc. 9th Python in 

Science Conf., 2010, pp. 56–61. 

[11]. S. Raschka, “Model evaluation, model selection, and algorithm selection in machine 

learning,” arXiv preprint arXiv:1811.12808, 2018. 

[12]. J. Wang, S. Lee, and M. Zhang, “Comparative analysis of modern workflow orchestration 

tools,” in Proc. IEEE Int. Conf. Big Data, 2021, pp. 156–163. 

[13]. T. C. Redman, Data Quality: The Field Guide. Digital Press, 2001. 



 

International Journal of Global Engineering (IJGE) 

ISSN: 2456-3099 (www.techpublic.in) 

VOL 10 ISSUE 3 (2025) PAGES 87 - 95 

RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025 

 

 

 Gouthukatla Gokul Sai, Padmavathamma M 95 

 

[14]. C. Batini and M. Scannapieco, Data and Information Quality: Dimensions, Principles and 

Techniques. Springer, 2016. 

[15]. M. Armbrust, A. Ghodsi, et al., “Lakehouse: A new generation of open platforms that unify 

data warehousing and advanced analytics,” in Proc. CIDR, 2021. 

[16]. J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” 

Communications of the ACM, vol. 51, no. 1, pp. 107–113, 2008. 

[17]. M. Zaharia, R. S. Xin, et al., “Resilient distributed datasets: A fault-tolerant abstraction for 

in-memory cluster computing,” in Proc. USENIX NSDI, 2012, pp. 15–28. 

[18]. H. Li, C. Wu, and Y. Zhang, “Adaptive query optimization for large-scale ETL workloads,” 

IEEE Trans. Parallel and Distributed Systems, vol. 32, no. 6, pp. 1421–1434, 2021. 

[19]. N. Marz and J. Warren, Big Data: Principles and Best Practices of Scalable Real-Time 

Data Systems. Manning Publications, 2015. 

[20]. B. Chandramouli, J. Goldstein, and D. Maier, “On-the-fly progress detection in iterative 

stream queries,” Proc. VLDB Endowment, vol. 2, no. 1, pp. 241–252, 2009. 

[21]. A. Thusoo, J. S. Sarma, et al., “Data warehousing and analytics infrastructure at 

Facebook,” in Proc. ACM SIGMOD Int. Conf. Management of Data, 2010, pp. 1013–1020. 

 


