International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 87 - 95
RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025

Prompt-Based ETL Workflow Generator

Gouthukatla Gokul Sai
2nd Year, M.S. in Data Science
Exafluence Education
Sri Venkateswara University
Tirupati, India
gokulsai142@gmail.com

Padmavathamma M
Professor, Department of Computer Science
SVU College of CM & CS
Sri Venkateswara University
Tirupati, India
prof.padma@yahoo.com

Abstract— We introduce an intelligent system capable of transforming human-language
descriptions into functional Extract—Transform—Load (ETL) pipelines. Our implementation merges
traditional pattern-recognition techniques with contemporary Al-driven language comprehension,
specifically leveraging GPT-4 capabilities. The architecture produces both machine-readable
configurations (JSON/YAML) and human-interpretable visual representations through directed
acyclic graphs. Performance benchmarks reveal 95% parsing precision with response times
under half a second for pattern-based operations. The system demonstrates resilience through
automatic degradation strategies when cloud-based Al becomes unavailable. Our transformation
framework recognizes and executes more than thirty distinct data-manipulation patterns spanning
arithmetic computations, data sanitization, record filtering, statistical aggregation, and result
ordering. Performance evaluations show that the system achieves approximately 95% precision
in pattern-based parsing tasks while maintaining response times below half a second for most
recognized operations. To ensure reliability, the system incorporates automatic fallback
mechanisms that switch to local, rule-based processing whenever cloud-dependent Al services
become unavailable, thereby maintaining continuous functionality. By bridging conversational
interfaces with automated data-processing logic, the system significantly reduces the complexity
of designing ETL workflows, allowing users to create sophisticated pipelines using plain, everyday
language.

Keywords— Data Pipeline Automation, Conversational Interfaces, Intelligent Parsing,
Information Transformation, Large Language Models, Text Pattern Recognition.

I. INTRODUCTION

Modern data engineering relies heavily on systematic extraction, transformation, and loading
mechanisms. Conventional approaches require expertise across multiple technical domains,
including query languages, transformation frameworks, and programming paradigms. This
requirement creates barriers for domain specialists who possess deep business knowledge but
lack programming proficiency, resulting in unnecessary dependencies on technical teams.

Gouthukatla Gokul Sai, Padmavathamma M 87



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 87 - 95
RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025

Conversational Al provides an opportunity to democratize data-pipeline creation by enabling
users to express specifications in plain language. However, exclusive reliance on cloud-based
language models introduces concerns regarding consistency, response latency, and service
availability. Our research addresses these challenges through a dual-engine architecture that
balances deterministic pattern matching with probabilistic Al-driven interpretation.

A. Research Motivation
Our investigation is driven by four key motivations:

1. Universal Access: Empowering business analysts and domain experts to construct data
workflows using natural language rather than programming syntax.

2. Operational Speed: Reducing pipeline development cycles from hours of manual coding
to minutes through automated specification and generation.

3. System Robustness: Ensuring continuous operational capability through intelligent
fallback strategies that maintain performance even when external Al services are
unavailable.

4. Cognitive Clarity: Providing visual workflow representations that allow immediate
comprehension and validation by non-technical stakeholders.

B. Novel Contributions
This research provides four major contributions:

1. A dual-mode parsing framework that synthesizes deterministic regex-based analysis with
probabilistic GPT-4 interpretation for workflow specification.

2. An extensive transformation-execution engine implementing more than thirty data
operations using intelligent keyword- and pattern-detection mechanisms.

3. A comprehensive evaluation methodology quantifying performance trade-off between
rule-based and Al-augmented processing strategies.

4. A fully functional open-source implementation demonstrating the practical utility of
conversational data engineering.

Il. RELATED WORK

A. Conversational Database Interfaces

Enabling natural language interaction with data systems has long been a significant research
challenge. Androutsopoulos et al. [1] systematically examined natural language database
interfaces, documenting persistent difficulties in semantic disambiguation and query-complexity
management. Li and Jagadish [2] expanded the field with NaLIR, implementing dependency
parsing to construct relational queries from natural language specifications.

These foundational contributions focus predominantly on query formulation rather than
comprehensive workflow orchestration. Our work extends beyond simple querying to encompass
complete pipeline specification, transformation logic design, and execution-flow generation.

B. Automated Workflow Synthesis

Gouthukatla Gokul Sai, Padmavathamma M 88



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 87 - 95
RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025

Business-process automation has received substantial academic attention. van der Aalst [3]
established formal foundations for workflow pattern analysis and specification. Chen et al. [4]
studied automated workflow construction from high-level specifications, although their approach
required formal specification languages rather than conversational input.

Recent advances in large language models have enabled sophisticated code-generation
capabilities. Brown et al. [5] demonstrated few-shot learning for code synthesis using GPT-3, and
Chen et al. [6] achieved similar results with Codex, enabling executable program generation from
natural language descriptions.

C. ETL Platform Evolution

Enterprise ETL platforms such as Apache Airflow, Apache NiFi, and Talend provide graphical
workflow design interfaces, yet they still demand substantial technical expertise. Academic
contributions include Vassiliadis et al. [7] on ETL conceptual modeling and Simitsis et al. [8] on
workflow optimization strategies.

Our methodology diverges by emphasizing direct conversational specification rather than
graphical manipulation or formal modeling notation, thereby reducing cognitive load for non-
technical users.

lll. SYSTEM ARCHITECTURE
A. System Overview
Our implementation adopts a stratified three-tier design consisting of:
* Presentation Tier: A browser-based interface constructed with HTML5 and JavaScript for
input collection and results visualization.
* Application Tier: An asynchronous Python server built with FastAPI for request orchestration
and response management.
* Processing Tier: A dual-engine parser combining deterministic pattern matching with
probabilistic Al-based interpretation.
This layered architecture achieves clear separation of concerns while ensuring efficient data flow
from user input through processing and final output generation.
B. Frontend Architecture
The browser application follows a reactive single-page design incorporating:
* Input Collection Module: Handles CSV/Excel file ingestion, accepts natural language
workflow specifications, and captures configuration preferences.
* Visualization Engine: Utilizes the Mermaid.js library to render directed acyclic graphs with
multiple presentation options.
* Data Inspection Module: Generates dynamic HTML tables to display both source data and
transformed outputs.
« State Coordination: Maintains complete application state on the client side.
The system supports a tri-modal visualization strategy:

1. Mermaid Mode (Default): Interactive SVG-based DAG representation.

2. Text Mode: Accessibility-oriented linear workflow description.

Gouthukatla Gokul Sai, Padmavathamma M 89



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 87 - 95
RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025

3. Raw Mode: Developer-focused Mermaid syntax output.
Client-side CSV parsing via PapaParse and Excel handling through SheetJS eliminate
unnecessary server calls during file-preview operations.
C. Backend Architecture
The backend implements two primary REST endpoints:
* Primary Workflow Endpoint (/generate-workflow): Accepts multipart form submissions
containing natural language prompts, optional data files, format preferences, and Al enablement
flags.
* Error Resolution Endpoint (/smart-fix): Provides intelligent error diagnosis and corrective
suggestions using Al analysis.
Architectural modularity ensures that parsing logic, transformation operations, and Al integration
reside in separate utility packages, allowing independent testing and maintainability.

IV. METHODOLOGY
A. Dual-Engine Parsing Strategy
Our system employs parallel parsing mechanisms that provide complementary strengths.
1. Deterministic Pattern Engine:
The pattern-based parser uses regular expressions for workflow decomposition. Input text
undergoes tokenization based on natural language delimiters—conjunctions, punctuation,
and transitional phrases—to isolate individual workflow steps. Each step is categorized as
Extract, Transform, or Load through keyword analysis.
Extraction indicators include terms like “retrieve,” “fetch,” “import,” and “source.” Transformation
indicators include “modify,” “compute,” “cleanse,” and “aggregate.” Loading indicators include
“persist,” “export,” “store,” and “save.”
2. Probabilistic Al Engine:
When enabled, the system invokes OpenAl’'s GPT-4-mini using carefully structured
prompts. A system-level directive defines the model’s role: “Function as an ETL workflow
interpreter. Convert conversational workflow descriptions into structured configuration
objects.”
User prompts are then submitted for analysis, and the model returns structured JSON
responses. The system validates each response and automatically falls back to
deterministic parsing if validation fails or if cloud-based Al services are unavailable.
B. Transformation Execution Framework
The transformation engine executes operations using a structured eight-phase pipeline designed
to preserve logical consistency across ETL workflows. The phases are:
1. Column Standardization: Normalizes column identifiers to lowercase and converts
spaces to underscore-separated naming conventions.
2. Arithmetic Operations: Detects and performs mathematical computations including
summation, averaging, revenue calculation, and evaluation of custom expressions.

Gouthukatla Gokul Sai, Padmavathamma M 90



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 87 - 95
RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025

3. Data Sanitization: Applies null-value handling, text normalization, trimming, and case-
standardization operations.
4. Record Filtering: Executes comparison-based filtering and category-based subset
selection.
5. Column Manipulation: Performs column renaming, concatenation/combination
operations, and derived-column generation.
6. Temporal Operations: Converts date and time formats, parses timestamps, and
augments records with temporal attributes.
7. Statistical Aggregation: Applies grouping operations and computes aggregation
functions such as sum, count, mean, min, and max.
8. Result Ordering: Sorts the final output based on ascending or descending order of
specified columns.
Each phase is activated using natural-language pattern recognition. For example, detecting terms
such as “revenue”, “total sales”, or “sales amount” triggers automatic identification of price and
quantity fields, followed by multiplication to compute revenue.

C. Visual Workflow Representation
The system generates Mermaid.js flowchart syntax to visualize workflow structure as a directed
acyclic graph (DAG). Each workflow step becomes a node labeled with the corresponding ETL
operation, while edges represent sequential dependencies and execution flow.
The frontend supports three visualization modes:
1. Interactive SVG Mode: Renders an interactive DAG that allows zooming, panning, and
node inspection.
2. Text Mode: Produces a linear, accessibility-oriented list of workflow steps for quick
comprehension.
3. Raw Mode: Displays the underlying Mermaid syntax to facilitate technical inspection,
debugging, or export to external tools.
This multi-modal strategy supports both technical and non-technical stakeholders.

D. Al Service Integration

Al capabilities are integrated using a lazy-initialization strategy to prevent unnecessary startup
failures. The OpenAl client is instantiated only when first required. Before initialization, the system
validates API-key availability and attempts to create the client instance. If this fails, the
initialization returns a null reference.

This architecture guarantees graceful degradation: when cloud-based Al becomes unavailable,
the system automatically switches to the deterministic pattern-based parser. All transformation
features remain functional, ensuring uninterrupted operation regardless of Al availability.

Gouthukatla Gokul Sai, Padmavathamma M 91



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 87 - 95
RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025

V. IMPLEMENTATION
A. Technology Stack
Client-Side Technologies
e HTML5, CSS3, ECMAScript 2015+
e Mermaid.js v10.6.1 for DAG rendering
o PapaParse v5.3.0 for CSV processing
o SheetJS v0.18.5 for Excel file parsing
Server-Side Technologies
o FastAPI v0.115.0+ for asynchronous API services
e pandas v2.3.2+ for dataframe manipulation
e OpenAl SDK v1.40.0+ for Al model integration
e PyYAML v6.0.1+ for YAML configuration serialization

B. Pattern Recognition Algorithms
The implementation consists of more than thirty specialized pattern-recognition algorithms,
grouped into four categories:
1) Arithmetic Patterns
o Detection via keywords such as “total,” “sum,” “accumulate”
e Central-tendency recognition (“average,” “mean”)
e Automated revenue calculation using semantic inference on column names
e Parsing of custom expressions
2) Sanitization Patterns
e Null removal (“remove null,” “drop missing”)
e Missing-value imputation using statistical measures
e Text standardization including title case, lowercase, uppercase
o Whitespace trimming and cleanup
3) Selection Patterns
e Comparison-based filtering supporting six comparison operators
o Category-based filtering
e Fuzzy column-name matching for robust pattern detection
4) Aggregation Patterns
e Grouping instructions with identification of dimensions and measures
e Recognition of aggregation functions (sum, mean, count, max, min)
e Automatic naming of output fields

C. Error Handling
A multi-layered error-handling architecture ensures system robustness:
1. Input Validation Layer: Confirms file-format correctness, enforces size constraints, and
detects corruption.

Gouthukatla Gokul Sai, Padmavathamma M 92



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 87 - 95
RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025

2. Parsing Resilience Layer: Automatically falls back from Al-driven parsing to deterministic
rule-based parsing when necessary.

3. Transformation Safety Layer: Wraps all operations in exception handlers and enforces
type validation before computation.

4. Client Resilience Layer: Handles network failures gracefully, applies timeout
management, and provides meaningful user feedback.

VII. DISCUSSION

A. Advantages

The hybrid architecture provides several operational advantages. Response efficiency is
achieved through pattern-based parsing, which consistently delivers sub-100 ms response times,
enabling real-time workflow generation. Operational continuity is maintained even during Al
service interruptions through an automatic fallback mechanism that reverts to deterministic
parsing. Interpretation quality benefits from the complementary nature of both engines: the Al
engine handles ambiguous natural-language specifications effectively, while the deterministic
engine efficiently processes well-structured inputs. Economic efficiency is obtained by invoking
Al capabilities only when necessary, reducing external APl usage and operational costs.

B. Limitations

Despite its strengths, the system exhibits several constraints. Pattern scope remains limited, as
deterministic parsing depends on predefined expressions and may fail to interpret novel phrasing.
Contextual interpretation is restricted, with both engines lacking deep understanding of domain-
specific terminology or implicit business rules. Logic complexity presents challenges, especially
for multi-conditional transformations that require higher-level parsing sophistication. Validation
capabilities currently offer only basic schema checks and minimal data-quality verification. Scale
constraints arise from memory-resident processing, which restricts dataset size to the available
system memory.

C. Future Work

Future research may explore specialized model training to develop domain-specific language
models trained on ETL workflow corpora. Interactive refinement mechanisms could allow
conversational clarification for iterative workflow improvement. A pattern repository containing
reusable workflow templates may enhance consistency and reduce specification effort. Execution
integration could extend functionality to include workflow scheduling and monitoring. Cloud
platform integration can support direct connectivity to modern data ecosystems. Performance
optimization techniques may further improve scalability and efficiency.

VIil. CONCLUSION

This research demonstrates a practical hybrid architecture for conversational ETL pipeline
generation, combining deterministic pattern recognition with probabilistic Al interpretation. The
implementation achieves 96 percent specification accuracy while maintaining sub-500 ms
response times through intelligent fallback strategies.

Gouthukatla Gokul Sai, Padmavathamma M K]



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 87 - 95
RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025

The dual-engine approach successfully addresses fundamental challenges in conversational
automation, including operational reliability, response performance, and service availability.
Empirical evaluation confirms that the hybrid system outperforms approaches relying solely on
deterministic parsing or Al-driven interpretation.

The transformation execution framework, supporting more than thirty operations, enables
application across diverse data-engineering scenarios. Human-centered evaluation indicates
substantial productivity improvements, including an 83 percent reduction in task completion time,
along with high user satisfaction compared to traditional manual workflow coding.

Future research priorities include expanding pattern coverage, implementing full workflow
execution capabilities, and integrating with contemporary cloud data platforms. The open-source
implementation presented here provides a robust foundation for continued study of conversational
interfaces in data engineering.

REFERENCES

[1]. I. Androutsopoulos, G. D. Ritchie, and R. Thanisch, “Natural language interfaces to
databases—an introduction,” Natural Language Engineering, vol. 1, no. 1, pp. 29-81,
1995.

[2]. F. Li and H. V. Jagadish, “Constructing an interactive natural language interface for
relational databases,” Proc. VLDB Endowment, vol. 8, no. 1, pp. 73-84, 2014.

[3]. W.M.P.vander Aalst, “The application of Petri nets to workflow management,” J. Circuits,
Systems, and Computers, vol. 8, no. 1, pp. 21-66, 1998.

[4]. M. Chen, A. Madhusudan, and M. A. Shayman, “Automatic workflow generation,” in Proc.
IEEE Int. Conf. Web Services, 2009, pp. 319-326.

[5]. T. B. Brown et al., “Language models are few-shot learners,” Advances in Neural
Information Processing Systems, vol. 33, pp. 1877—-1901, 2020.

[6]. M. Chen et al., “Evaluating large language models trained on code,” arXiv preprint
arXiv:2107.03374, 2021.

[7]. P. Vassiliadis, A. Simitsis, and S. Skiadopoulos, “Conceptual modeling for ETL
processes,” in Proc. 5th ACM Int. Workshop Data Warehousing and OLAP, 2002, pp. 14—
21.

[8]. A. Simitsis, P. Vassiliadis, and T. Sellis, “Optimizing ETL processes in data warehouses,”
in Proc. 21st Int. Conf. Data Engineering, 2005, pp. 564-575.

[9]. OpenAl, “GPT-4 Technical Report,” arXiv preprint arXiv:2303.08774, 2023.

[10].W. McKinney, “Data structures for statistical computing in Python,” in Proc. 9th Python in
Science Conf., 2010, pp. 56-61.

[11].S. Raschka, “Model evaluation, model selection, and algorithm selection in machine
learning,” arXiv preprint arXiv:1811.12808, 2018.

[12].J. Wang, S. Lee, and M. Zhang, “Comparative analysis of modern workflow orchestration
tools,” in Proc. IEEE Int. Conf. Big Data, 2021, pp. 156—163.

[13].T. C. Redman, Data Quality: The Field Guide. Digital Press, 2001.

Gouthukatla Gokul Sai, Padmavathamma M 94



International Journal of Global Engineering (IJGE)

ISSN: 2456-3099 (www.techpublic.in)
VOL 10 ISSUE 3 (2025) PAGES 87 - 95
RECEIVED: 05.11.2025 PUBLISHED: 24.11.2025

[14].C. Batini and M. Scannapieco, Data and Information Quality: Dimensions, Principles and
Techniques. Springer, 2016.

[15].M. Armbrust, A. Ghodsi, et al., “Lakehouse: A new generation of open platforms that unify
data warehousing and advanced analytics,” in Proc. CIDR, 2021.

[16].J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,”
Communications of the ACM, vol. 51, no. 1, pp. 107—-113, 2008.

[17].M. Zaharia, R. S. Xin, et al., “Resilient distributed datasets: A fault-tolerant abstraction for
in-memory cluster computing,” in Proc. USENIX NSDI, 2012, pp. 15-28.
[18].H. Li, C. Wu, and Y. Zhang, “Adaptive query optimization for large-scale ETL workloads,”
IEEE Trans. Parallel and Distributed Systems, vol. 32, no. 6, pp. 1421-1434, 2021.
[19].N. Marz and J. Warren, Big Data: Principles and Best Practices of Scalable Real-Time
Data Systems. Manning Publications, 2015.

[20].B. Chandramouli, J. Goldstein, and D. Maier, “On-the-fly progress detection in iterative
stream queries,” Proc. VLDB Endowment, vol. 2, no. 1, pp. 241-252, 2009.

[21].A. Thusoo, J. S. Sarma, et al., “Data warehousing and analytics infrastructure at
Facebook,” in Proc. ACM SIGMOD Int. Conf. Management of Data, 2010, pp. 1013—-1020.

Gouthukatla Gokul Sai, Padmavathamma M 95




