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Abstract 

 

K-means clustering is broadly used for its efficiency. However, this algorithm suffers from two 

principal drawbacks: first, the user ought to specify in advance the right wide variety of clusters, 

which is normally a difficult task; second, its closing consequences depend on the initial starting 

points. The existing paper intends to overcome these issues by way of proposing a parameter free 

algorithm based on k-means (called pfk-means). We evaluated its overall performance by 

applying on several widespread datasets and evaluate with gmeans, a associated well be aware of 

computerized clustering method. Our overall performance studies have demonstrated that the 

proposed approach is fantastic in predicting the correct wide variety of clusters and producing 

consistent clustering results. 
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INTRODUCTION 

 

In Data Mining, clustering consists of grouping a given dataset into a predefined variety of 

disjoint sets, called clusters, so that the elements in the same cluster are greater comparable to 

each other and more distinctive from the elements in the other cluster. This optimization trouble 

is acknowledged to be NP-hard, even when the clustering procedure offers with solely two 

clusters (Aloise 1980). Therefore, many heuristics and approximation algorithms have been 

proposed, in order to find near most advantageous clustering answer in reasonable computational 

time. The most outstanding clustering algorithm kmeans is a grasping algorithm which has two 

stages: Initialization, in which we set the seed set of centroids, and an iterative stage, known as 

Lloyd’s algorithm (Lloyd., S. P.1982). Additionally, Lloyd’s algorithm has two steps:  

 

The undertaking step, in which every object is assigned to its closest centroid, and the centroid’s 

update step. The essential gain of k-means is its quickly convergence to a neighborhood 

minimum, but k-means has two important drawbacks: first, the person ought to specifies in 

develop the correct wide variety of clusters, which is usually a difficult task; second, the 

algorithm is sensitive to the initial beginning points. In this paper, an alternative parameter free 

method for computerized clustering, called pfk-means, is proposed. Algorithm validation and 

comparative study with gmeans (Hamerly and Elkan 2003), a associated properly recognised 

algorithm, are carried out using countless real-world and artificial clustering records sets from he 

UCI Machine Learning Repository- UCIMLR (Asuncion et.al 2007). In the subsequent section, 

some associated works are briefly discussed. Then the proposed strategy is described in Section 

three Section 4 affords functions outcomes of this clustering approach to exclusive standard 

information sets and reviews its performance. Lastly, conclusion of this paper is summarized in 

Section 5. 
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2. RELATED WORK 

 

Despite the reality that obtaining an most advantageous range of clusters k for a given records set 

is an NP-hard hassle (Spath 1980), numerous technique have been developed to find k 

automatically. Pelleg and Moore (2000) brought the X-means algorithm, which proceed through 

getting to know k with kmeans using the Bayesian Information Criterion (BIC) to rating each 

model, and chooses the model with the best possible BIC score. However, this approach tends to 

overfit when it deals with records that occur from non-spherical clusters. Tibshirani et al. (2001) 

proposed the Gap statistic, which compares the probability of a realized mannequin with the 

distribution of the probability of models trained on facts drawn from a null distribution. This 

method is appropriate for discovering a small variety of clusters, but has challenge when ok 

increases.  

 

Cheung (2005) studied a rival penalized competitive studying algorithm, and Xu ( 1997, 1996) 

has established a very appropriate end result in finding the cluster number. Lee and Antonsson 

(2000) used an evolutionary approach to dynamically cluster a data set. Sarkar,et al,. (1997) and 

Fogel, Owens, and Walsh (1966) are proposed an method to dynamically cluster a statistics set 

the use of evolutionary programming, where two fitness features are concurrently optimized: one 

offers the ideal quantity of clusters, whereas the different leads to a perfect identification of 

every cluster’s centroid. Recently Swagatam Das and Ajith Abraham (2008) proposed an 

Automatic Clustering the usage of Differential Evolution (ACDE) algorithm with the aid of 

introducing a new chromosome representation.  

 

Hamerly and Elkan (2003) proposed the gmeans algorithm, primarily based on K-means 

algorithm, which uses projection and a statistical take a look at for the hypothesis that the facts in 

a cluster come from a Gaussian distribution. This algorithm works successfully if clusters are 

well-separated, and fails when clusters overlap and appear non-Gaussian. In our experiments, 

gmeans tends to overestimate the number of clusters, as mentioned in section 4 The majority of 

these strategies to decide the satisfactory range of clusters may additionally now not work very 

nicely in practice. In the current work, an alternative strategy is proposed, trying to overcome 

these issues. 

 

3. PROPOSED APPROACH 

 

The proposed algorithm starts by way of setting kmax=floor((n) 1/2), where n is the wide variety 

of objects in the given facts set. This choice is encouraged via the fact that the quantity of 

clusters lies in the vary from 2 to (n)1/2, as stated by means of Pal and Bezdek (1995). Then it 

applies a deterministic initialization method proposed by way of Kettani et al. (2013) (called 

KMNN ) by using splitting the complete dataset into two clusters. K-means algorithm is then 

utilized with these two initial centroids. Again, the biggest cluster is then break up into two 

clusters by KMNN. This manner is repeated till k=kmax, and at each iteration, the maximum of 

CH cluster validity index (Calinski and Harabasz 1974) of the cutting-edge partition is stored. 

We used this index because it is rather cheaper to compute, and it commonly outperforms other 

cluster validity indices as stated by Milligan and Cooper (1985). Finally, the algorithm outputs 

the most appropriate k and partition corresponding to the most value of CH stored so far. This 

algorithm is outlined in the pseudo-code below: 

 

Algorithm pfk-means 
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4 EXPERIMENTAL RESULTS  

 

Algorithm validation is performed the use of distinctive data units from the UCI Machine 

Learning Repository [10]. We evaluated its overall performance by making use of on quite a few 

benchmark datasets and examine with gmeans (Hamerly and Elkan 2003). Silhouette index 

(Kaufman and Rousseeuw 1995) which measures the cohesion primarily based on the distance 

between all the points in the same cluster and the separation primarily based on the nearest 

neighbor distance, used to be used in these experiments in order to consider clustering accuracy. 

( bigger average silhouette value indicates a greater clustering accuracy ). Silhouette index is 

based on distances between observations in the identical cluster and in one of a kind clusters. 

Given observation i , let ai be the average distance from point i to all different factors in equal 

cluster and d i, j  represents the average distance from factor i to all points in any other cluster j . 

Finally, let bi denotes the minimal of these average distances d two i, j two . The silhouette width 

for the i-th statement is: silh(i ) (bi two ai)/max two ai , bi  two The average silhouette width can 

be locate through averaging silh(i ) over all observations: The silhouette width silh(i ) ranges 

from -1 to 1. If an observation has a cost shut to 1, then the facts point is nearer to its personal 

cluster than a neighboring one. If it has a silhouette width close to -1, then it is not very properly 

clustered. A silhouette width close to zero suggests that the observation ought to just belong to 

modern cluster or one that is near to it. Kaufman and Roussee use the common silhouette width 

to estimate the quantity of clusters in a facts set by the use of the partition with two or extra 

clusters that yields the greatest average silhouette width. Experimental outcomes are mentioned 

in desk 1 and determine 1, and some clustering outcomes are depicted in figure 2 to 7.  
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TABLE 1: Investigational results of gmeans and pfk-means application on dissimilar datasets in 

term of average Silhouette value. 

 
 

 

 

 
Fig 1: Diagram depicting of the mean Silhouette index for both pfk-means and gmeans                                                

applied on diverse datasets. 
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5 CONCLUSIONS  

In this article, a parameter free k-means algorithm is recommended. The performance has been 

evaluated by applying on several standard datasets and compare with gmeans. The experimental 

study have established that it is effectual in producing consistent clustering results and have 

found the correct number of clusters with a successful rate of 63.33%. In the upcoming work, it 

will be of significance to find a tighter upper bound on the number of clusters, instead of n1/2 , 

in order to reduce the number of computations steps of the proposed approach. An additional 

probable augmentation will consist to choose a more appropriate similarity measure instead of 

Euclidian distance aiming to produce more accurate clustering results.  
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